Skip to main content
Log in

CdTe nanorods for nonenzymatic hydrogen peroxide biosensor and optical limiting applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Cadmium telluride nanorods (CdTe NRs) have been prepared by the hydrothermal method using ascorbic acid and characterized by x-ray photoelectron spectroscopy, linear and nonlinear optical properties, magnetic properties, and electrochemical analysis. The temperature-dependent magnetic study shows the ferromagnetic behavior. Modified CdTe NRs/glassy carbon electrode was used as the hydrogen peroxide (H2O2) biosensor. It exhibits a linear range (0.67–8.04 μM) with good sensitivity (1326 μA mM−1 cm−2), detection limit (0.1 μM), and a rapid amperometric response time (5 s). It displays a high selectivity toward H2O2 and interference-free phenomenon for other electroactive species such as ascorbic and oxalic acids. The sensor has good selectivity, stability, and reproducibility. CdTe NRs show a better optical limiting property under laser excitation (532 nm, 9 ns) with the two-photon absorption (TPA) coefficient of 12.0 × 10−10 m/W at 100 μJ and an optical limiting of 1.60 J/cm2. These results indicated that the prepared materials could be promising for the detection of hydrogen peroxide and for use as memory storage devices and optical limiters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

References

  1. Dhara K, Stanley J, Ramachandran T, Nair BG, Satheesh Babu TG (2014) Pt-CuO nanoparticles decorated reduced graphene oxide for the fabrication of highly sensitive non-enzymatic disposable glucose sensor. Sensors Actuators B Chem 195:197–205

    CAS  Google Scholar 

  2. Kannan PK, Rout CS (2015) High performance non-enzymatic glucose sensor based on one electrodeposited nickel sulfide. Chem Eur J 21:9355–9359

    CAS  PubMed  Google Scholar 

  3. Pang H, Gao F, Chen Q, Liu R, Lu Q (2012) Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis. Dalton Trans 41:5862–5868

    CAS  PubMed  Google Scholar 

  4. Fang K, Yang Y, Fu L, Zheng H, Yuan J, Niu L (2014) Highly selective H2O2 sensor based on 1-D nanoporous Pt@C hybrids with core-shell structure. Sensors Actuators B Chem 191:401–407

    CAS  Google Scholar 

  5. Zheng T, Li X, Bian X, Zhang C, Xue Y, Jia X, Wang C (2012) Fabrication of ternary CNT/PPy/KxMnO2 composite nanowires for electrocatalytic applications. Talanta 90:51–56

    CAS  PubMed  Google Scholar 

  6. Jia W, Guo M, Zheng Z, Yu T, Rodriguez EG, Wang Y, Lei Y (2009) Electrocatalytic oxidation and reduction of H2O2 on vertically aligned Co3O4 nanowalls electrode: toward H2O2 detection. J Electron Chem 625:27–32

    CAS  Google Scholar 

  7. Li X, Liu X, Wang W, Li L, Lu X (2014) High loading Pt electrode on functionalization of carbon nanotubes for fabricating nonenzyme hydrogen peroxide sensor. Biosens Bioelectron 59:221–226

    PubMed  Google Scholar 

  8. Wan L, Liu J, Huang XJ (2014) Novel magnetic nickel telluride nanowires decorated with thorns: synthesis and their intrinsic peroxidase-like activity for detection of glucose. Chem Commun 50:13589–13591

    CAS  Google Scholar 

  9. Abdelwahab AA, Shim YB (2014) Nonenzymatic H2O2 sensing based on silver nanoparticles capped polyterthiophene/MWCNT nanocomposite. Sensors Actuators B Chem 201:51–58

    CAS  Google Scholar 

  10. Babu KJ, Zahoor A, Nahm KS, Ramachandran R, Rajan MAJ, Kumar GG (2014) The influences of shape and structure of MnO2 nanomaterials over the non-enzymatic sensing ability of hydrogen peroxide. J Nanopart Res 16:2250

    Google Scholar 

  11. Guascito MR, Chirizzi D, Malitesta C, Siciliano T, Tepore A (2013) Te oxide nanowires as advanced materials for amperometric nonenzymatic hydrogen peroxide sensing. Talanta 115:863–869

    CAS  PubMed  Google Scholar 

  12. Guascito MR, Chirizzi D, Malitesta C, Mazzotta E, Siciliano M, Siciliano T, Tepore A, Turco A (2011) Low-potential sensitive H2O2 detection based on composite micro tubular Te adsorbed on platinum electrode. Biosens Bioelectron 26:3562–3569

    CAS  PubMed  Google Scholar 

  13. Lu W, Sun Y, Dai H, Ni P, Jiang S, Wang Y, Li Z (2016) Fabrication of cuprous sulfide nanorods supported on copper foam for nonenzymatic amperometric determination of glucose and hydrogen peroxide. RSC Adv 6:90732–90738

    CAS  Google Scholar 

  14. Dutta AK, Das S, Samanta PK, Roy S, Adhikary B, Biswas P (2014) Non-enzymatic amperometric sensing of hydrogen peroxide at a CuS modified electrode for the determination of urine H2O2. Electrochim Acta 144:282–287

    CAS  Google Scholar 

  15. Datta AK, Maji SK, Srivastava DN, Mondal A, Biswas P, Paul P, Adhikary B (2012) Synthesis of FeS and FeSe nanoparticles from a single source precursor: a study of their photocatalytic activity, peroxidase-like behavior and electrochemical sensing of H2O2. ACS Appl Mater Interfaces 4:1919–1927

    Google Scholar 

  16. Roushani M, Shamsipur M, Rajabi HR (2014) Highly selective detection of dopamine in the presence of ascorbic acid and uric acid using thioglycolic acid capped CdTe quantum dots modified electrode. J Electroanal Chem 712:19–24

    CAS  Google Scholar 

  17. Qin Q, Bai X, Hua Z (2017) Electrochemical synthesis of well-dispersed CdTe nanoparticles on reduced graphene oxide and its photoelectrochemical sensing of catechol. J Electrochem Soc 164:H241–H249

    CAS  Google Scholar 

  18. Yao HB, Li XB, Ai SY, Yu SH (2010) Hydrazine-cadmium tellurite hybrid microcrystals:an efficient precursor to porous cadmium telluride and tellurium architectures through its thermal decomposition. Nano Res 3:81–91

    CAS  Google Scholar 

  19. Suchand Sandeep CS, Samal AK, Pradeep T, Philip R (2010) Optical limiting properties of Te and Ag2Te nanowires. Chem Phys Lett 485:326–330

    CAS  Google Scholar 

  20. Sridharan K, Tamilselvan V, Yuvaraj D, Narasimha Rao K, Philip R (2012) Synthesis and nonlinear optical properties of lead telluride nanorods. Opt Mater 34:639–645

    CAS  Google Scholar 

  21. Zhao M, Peng R, Zhang Q, Wang Q, Chang MJ, Liu Y, Song YL, Zhang HL (2015) Broadband optical limiting response of graphene PbS nanohybrid. Nanoscale 7:9268–9274

    CAS  PubMed  Google Scholar 

  22. Ait Raiss A, Sbai Y, Bahmad L, Benyoussef A (2015) Magnetic and magneto optical properties of doped and co-doped cd with (Mn, Fe) ab initio study. J Magn Magn Mater 385:295–301

    CAS  Google Scholar 

  23. Lei Y, Miao N, Zhou J, Hassan QU, Wang J (2017) Novel magnetic propetries of CoTe nanorods and diversified CoTe2 nanostructures obtained at different NaOH concentrations Sci. Technol Adv Mater 18:325–333

    CAS  Google Scholar 

  24. Manikandan M, Nisha Francis P, Dhanuskodi S, Maheswari N, Muralidharan G (2018) High performance supercapacitor behavior of hydrothermally synthesized CdTe nanorods. J Mater Sci Matter Electron 29:17397–17404

    CAS  Google Scholar 

  25. Khallaf H, Chen CT, Chang LB, Lupan O, Dutta A, Heinrich H, Shenouda A, Chow L (2011) Investigation of chemical bath deposition of CdO thin film using three different complexing agents. Appl Surf Sci 257:9237–9242

    CAS  Google Scholar 

  26. Song JM, Lin YZ, Zhan YJ, Tian YC, Liu G, Yu SH (2008) Superlong high-quality tellurium nanotubes: synthesis, characterization and optical property. Cryst Growth Des 8:1902–1908

    CAS  Google Scholar 

  27. Jiang L, Zhu YJ, Cui JB (2010) A general solvothermal route to the synthesis of CoTe, Ag2Te/Ag and CdTe nanostructures with varied morphologies. Eur J Chem 19:3005–3011

    Google Scholar 

  28. Lie YX, Zhou JP, Wang JZ, Miao NX, Guo ZQ, Hassan QU (2017) Novel magnetic properties of uniform NiTex nanorods selectively synthesized by hydrothermal method. Mater Des 117:390–395

    Google Scholar 

  29. Tiwari P, Verma R, Kane SN, Tatarchuk T, Mazaleyrat F (2019) Effect of Zn addition on structural, magnetic properties and anti-structural modeling of magnesium-nickel nano ferrites. Mater Chem Phys 229:78–86

    CAS  Google Scholar 

  30. Verma R, Kane SN, Tiwari P, Modak SS, Tatarchuk T, Mazaleyrat F (2018) Ni addition induced modification of structural, magnetic properties and antistructural modeling of Zn1-xNixFe2O4 (x =0.0 - 1.0) nanoferrites. Mol Cryst Liq Cryst 674:130–141

    CAS  Google Scholar 

  31. Tatarchuk T, Paliychuk N, Pacia M, Kaspera W, Macyk W, Kotarba A, Bogacz BF, Pedziwiatr AT, Mironyuk I, Kurzydło P, Shyichuk A (2019) Structure-redox reactivity relationships in Co1-xZnxFe2O4: the role of stoichiometry. New J Chem 43:3038–3049

    CAS  Google Scholar 

  32. Raghuvanshi S, Tiwari P, Kane SN, Avasthi DK, Mazaleyrat F, Tatarchuk T, Mironyuk I (2019) Dual control on structure and magnetic properties of mg ferrite: role of swift heavy ion irradiation. J Magn Magn Mater 471:521–528

    CAS  Google Scholar 

  33. Guascito MR, Filippo E, Malitesta C, Manno D, Serra A, Turco A (2011) A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide. Biosens Bioelectron 24:1057–1063

    Google Scholar 

  34. Xuan ZW, Sun XY, Jiao GS, Zhai ZQ, Sun W, Lu L (2010) Ionic liquid hemoglobin carbon paste composite bioelectrode and its electrocatalytic activity. J Chin Chem Soc 57:1262–1267

    CAS  Google Scholar 

  35. Palanisamy S, Cheemalapati S, Chen SM (2012) Highly sensitive and selective hydrogen peroxide biosensor based on hemoglobin immobilized at multiwalled carbon nanotubes-zincoxide nanocomposite electrode. Anal Biochem 429:108–115

    CAS  PubMed  Google Scholar 

  36. Ma W, Tian D (2010) Direct electron transfer and electrocatalysis of hemoglobin in ZnO coated multiwalled carbon nanotubes and nafion composite matrix. Bioelectrochem 78:106–112

    CAS  Google Scholar 

  37. Govindasamy M, Mani V, Chen SM, Karthik R, Manibalan K, Uma Maheshwari R (2016) MoS2 flowers grown on graphene/carbon nanotubes: a versatile substrate for electrochemical determination of hydrogen peroxide. Int J Electrochem Sci 11:2954–2961

    CAS  Google Scholar 

  38. Manikandan M, Dhanuskodi S, Maheswari N, Muralidharan C, Revathi C, Rajendra Kumar RT, Mohan Rao G (2017) High performance supercapacitor and non-enzymatic hydrogen peroxide sensor based on tellurium nanoparticles. Sens Biosens Res 13:40–48

    Google Scholar 

  39. Shi JJ, Hu W, Zhao D, He TT, Zhu JJ (2012) Sonoelectrochemical synthesized RGO- PbTe composite for novel electro chemical biosensor. Sensors Actuators B Chem 173:239–243

    CAS  Google Scholar 

  40. Vineeshkumar TV, Raj DR, Prasanth S, Unnikrishnan NV, Mahadevan Pillai VP, Sudarasanakumar C (2018) Fe induced optical limiting properties of Zn1-x FexS nanoparticles. Opt Laser Technol 99:220–229

    CAS  Google Scholar 

  41. Das A, Ratha S, Yadav RK, Mondal A (2017) Strong third order nonlinear response and optical limiting of α NiMoO4 nanoparticles. J Appl Phys 122:013107

    Google Scholar 

  42. Seetharaman A, Sivasubramani D, Gandhiraj V, Soma VR (2017) Tunable nanosecond and femtosecond nonlinear optical properties of C-N-S doped TiO2 nanoparticles. J Phys Chem C 121:24192–24205

    CAS  Google Scholar 

  43. Ann Mary KA, Unnikrishnan NV, Philip R (2015) Defect related emmision and nanosecond optical power limiting in CuS quantum dots. Phys E: Low Dinem Syst Nanostruct 74:151–155

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science and Technology, New Delhi, for providing Nd:YAG laser under FIST and Prof. G. Mohan Rao, Indian Institute of Science, Bangalore, for providing XPS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dhanuskodi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, M., Revathi, C., Senthilkumar, P. et al. CdTe nanorods for nonenzymatic hydrogen peroxide biosensor and optical limiting applications. Ionics 26, 2003–2010 (2020). https://doi.org/10.1007/s11581-019-03361-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03361-2

Keywords

Navigation