Skip to main content
Log in

NiTe Magnetic Semiconductor Nanorods for Optical Limiting and Hydrogen Peroxide Sensor

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

An Author Correction to this article was published on 23 May 2023

This article has been updated

Abstract

The hydrothermal technique was used to make nickel telluride nanorods (NiTe NRs) utilizing ascorbic acid and cetrimonium bromide (CTAB) as reducing agents. Temperature dependent magnetic study for NiTe NRs shows a ferromagnetism behavior. Under 532 nm laser excitation, the obtained materials had a better optical limiting property, with a two photon absorption coefficient of 6.6 × 10− 10 m/W and an optical limiting of 2.44 J/cm2 at 200 µJ. NiTe NRs modified electrode shows a excellent hydrogen peroxide electrocatalytic activity with reproducibility, repeatability and durability. It displays an outstanding sensitivity of 6.35 µAµM− 1 cm− 2 and a detection limit of 6 nM. In the presence of interfering species such as dopamine, uric acid, ascorbic acid, glucose, and folic acid, the electrode has a high level of selectivity. A real sample analysis for NiTe NRs sensor has been established in human serum and rat brain serum showed good recoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Y. Li, J.J. Zhang, J. Xuan, L.P. Jiang, J.J. Zhu, Fabrication of a novel nonenzymatic hydrogen peroxide sensor based on Se/Pt nanocomposites. Electrochem. commun. 12, 777–780 (2010). https://doi.org/10.1016/j.elecom.2010.03.031

    Article  CAS  Google Scholar 

  2. K. Fang, Y. Yang, L. Fu, H. Zheng, J. Yuan, L. Niu, Highly selective H2O2 sensor based on 1-D nanoporous Pt@C hybrids with core-shell structure. Sensors Actuators, B Chem. 191, 401–407 (2014). https://doi.org/10.1016/j.snb.2013.09.090

    Article  CAS  Google Scholar 

  3. S. Kogularasu, M. Govindasamy, S.M. Chen, M. Akilarasan, V. Mani, 3D graphene oxide-cobalt oxide polyhedrons for highly sensitive non-enzymatic electrochemical determination of hydrogen peroxide. Sensors Actuators B Chem. 253, 773–783 (2017). https://doi.org/10.1016/j.snb.2017.06.172

    Article  CAS  Google Scholar 

  4. S. Dong, J. Xi, Y. Wu, H. Liu, C. Fu, H. Liu, F. Xiao, High loading MnO2 nanowires on graphene paper: Facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells. Anal. Chim. Acta 853, 200–206 (2015). https://doi.org/10.1016/j.aca.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  5. S. Kubendhiran, B. Thirumalraj, S. Chen, C. Karuppiah, Journal of Colloid and Interface Science Electrochemical co-preparation of cobalt sulfide/reduced graphene oxide composite for electrocatalytic activity and determination of H2O2 in biological samples. J. Colloid Interface Sci. 509, 153–162 (2018). https://doi.org/10.1016/j.jcis.2017.08.087

    Article  CAS  PubMed  Google Scholar 

  6. K.J. Babu, A. Zahoor, K.S. Nahm, R. Ramachandran, M.A.J. Rajan, G. Gnana-Kumar, The influences of shape and structure of MnO2 nanomaterials over the non-enzymatic sensing ability of hydrogen peroxide. J. Nanoparticle Res. 16, 2250 (2014). https://doi.org/10.1007/s11051-014-2250-4

    Article  CAS  Google Scholar 

  7. T. Zheng, X. Lu, X. Bian, C. Zhang, Y. Xue, X. Jia, C. Wang, Fabrication of ternary CNT/PPy/K xMnO 2 composite nanowires for electrocatalytic applications. Talanta 90, 51–56 (2012). https://doi.org/10.1016/j.talanta.2011.12.066

    Article  CAS  PubMed  Google Scholar 

  8. A.K. Dutta, S. Das, P.K. Samanta, S. Roy, B. Adhikary, P. Biswas, Non-enzymatic amperometric sensing of hydrogen peroxide at a CuS modified electrode for the determination of urine H2O2. Electrochim. Acta. 144, 282–287 (2014). https://doi.org/10.1016/j.electacta.2014.08.051

    Article  CAS  Google Scholar 

  9. L. Wan, J. Liu, X.-J. Huang, Novel magnetic nickel telluride nanowires decorated with thorns: synthesis and their intrinsic peroxidase-like activity for detection of glucose. Chem. Commun 50, 13589–13591 (2014). https://doi.org/10.1039/c4cc06684g

    Article  CAS  Google Scholar 

  10. M. Manikandan, P.N. Francis, S. Dhanuskodi, N. Maheswari, G. Muralidharan, High performance supercapacitor behavior of hydrothermally synthesized CdTe nanorods. J. Mater. Sci. Mater. Electron. 29, 17397–17404 (2018). https://doi.org/10.1007/s10854-018-9837-y

    Article  CAS  Google Scholar 

  11. A. Padmanaban, N. Padmanathan, T. Dhanasekaran, R. Manigandan, S. Srinandhini, P. Sivaprakash, S. Arumugam, V. Narayanan, Hexagonal phase Pt-doped cobalt telluride magnetic semiconductor nanoflakes for electrochemical sensing of dopamine. J. Electroanal. Chem. 877, 114658 (2020). https://doi.org/10.1016/j.jelechem.2020.114658

    Article  CAS  Google Scholar 

  12. B. Golrokh-Amin, U. De Silva, J. Masud, M. Nath, Ultrasensitive and highly selective Ni3Te2 as a nonenzymatic glucose sensor at extremely low working potential. ACS Omega 4, 11152–11162 (2019). https://doi.org/10.1021/acsomega.9b01063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. B. Fatima, U. Saeed, D. Hussain, S.E.Z. Jawad, H.S. Rafiq, S. Majeed, S. Manzoor, S.Y. Qadir, M.N. Ashiq, M. Najam-ul-Haq, Facile hydrothermal synthesis of NiTe nanorods for non-enzymatic electrochemical sensing of whole blood hemoglobin in pregnant anemic women. Anal. Chim. Acta. 1189, 339204 (2022). https://doi.org/10.1016/j.aca.2021.339204

    Article  CAS  PubMed  Google Scholar 

  14. J.J. Zhang, Y.G. Liu, L.P. Jiang, J.J. Zhu, Synthesis, characterizations of silica-coated gold nanorods and its applications in electroanalysis of hemoglobin. Electrochem. Commun. 10, 355–358 (2008). https://doi.org/10.1016/j.elecom.2007.12.017

    Article  CAS  Google Scholar 

  15. Y. Liu, J. Zhang, W. Hou, J.J. Zhu, A Pd/SBA-15 composite: synthesis, characterization and protein biosensing. Nanotechnology 19, 135707 (2008). https://doi.org/10.1088/0957-4484/19/13/135707

    Article  CAS  PubMed  Google Scholar 

  16. K.S. Bhat, H.C. Barshilia, H.S. Nagaraja, Porous nickel telluride nanostructures as bifunctional electrocatalyst towards hydrogen and oxygen evolution reaction. Int. J. Hydrogen Energy. 42, 24645–24655 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.098

    Article  CAS  Google Scholar 

  17. Z. Wang, L. Zhang, In situ growth of NiTe nanosheet film on nickel foam as electrocatalyst for oxygen evolution reaction. Electrochem. commun. 88, 29–33 (2018). https://doi.org/10.1016/j.elecom.2018.01.014

    Article  CAS  Google Scholar 

  18. S. Pradhan, R. Das, S. Biswas, D.K. Das, R. Bhar, R. Bandyopadhyay, P. Pramanik, Chemical synthesis of nanoparticles of nickel telluride and cobalt telluride and its electrochemical applications for determination of uric acid and adenine. Electrochim Acta. 238, 185–193 (2017). https://doi.org/10.1016/j.electacta.2017.04.023

    Article  CAS  Google Scholar 

  19. S.M. Yong, P. Muralidharan, S.H. Jo, D.K. Kim, One-step hydrothermal synthesis of CdTe nanowires with amorphous carbon sheaths. Mater. Lett. 64, 1551–1554 (2010). https://doi.org/10.1016/j.matlet.2010.04.045

    Article  CAS  Google Scholar 

  20. M. Manikandan, K. Subramani, M. Sathish, S. Dhanuskodi, NiTe nanorods as electrode material for high performance supercapacitor applications. ChemistrySelect 3, 9034–9040 (2018). https://doi.org/10.1002/slct.201801421

    Article  CAS  Google Scholar 

  21. M. Manikandan, K. Subramani, S. Dhanuskodi, M. Sathish, One-pot hydrothermal synthesis of nickel cobalt telluride nanorods for hybrid energy storage systems. Energy Fuels 35, 12527–12537 (2021). https://doi.org/10.1021/acs.energyfuels.1c00351

    Article  CAS  Google Scholar 

  22. J. Song, Y. Lin, Y. Zhan, Y. Tian, G. Liu, S. Yu, Superlong high-quality tellurium nanotubes: synthesis, characterization and optical property. Cryst. Growth Des. 8, 1902–1908 (2008). https://doi.org/10.1021/cg701125k

    Article  CAS  Google Scholar 

  23. H. Chen, M. Fan, C. Li, G. Tian, C. Lv, D. Chen, K. Shu, J. Jiang, One-pot synthesis of hollow NiSe-CoSe nanoparticles with improved performance for hybrid supercapacitors. J. Power Sources. 329, 314–322 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.097

    Article  CAS  Google Scholar 

  24. Y. Lei, N. Miao, J. Zhou, Q.U. Hassan, J. Wang, Novel magnetic properties of CoTe nanorods and diversified CoTe2 nanostructures obtained at different NaOH concentrations. Sci. Technol. Adv. Mater. 18, 325–333 (2017). https://doi.org/10.1080/14686996.2017.1317218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. N. Umeyama, M. Tokumoto, S. Yagi, M. Tomura, K. Tokiwa, T. Fujii, R. Toda, N. Miyakawa, S.I. Ikeda, Synthesis and magnetic properties of NiSe, NiTe, CoSe, and CoTe. Jpn. J. Appl. Phys. 51, 053001 (2012). https://doi.org/10.1143/JJAP.51.053001

    Article  CAS  Google Scholar 

  26. M. Ragam, G. Kalaiselvan, S. Arumugam, N. Sankar, K. Ramachandran, Room temperature ferromagnetism in MnxZn1−xS (x=0.00–0.07) nanoparticles. J. Alloys Compd. 541, 222–226 (2012). https://doi.org/10.1016/j.jallcom.2012.07.024

    Article  CAS  Google Scholar 

  27. A. Seetharaman, D. Sivasubramanian, V. Gandhiraj, V.R. Soma, Tunable nanosecond and femtosecond nonlinear optical properties of C-N-S-doped TiO2 nanoparticles. J. Phys. Chem. C. 121, 24192–24205 (2017). https://doi.org/10.1021/acs.jpcc.7b08778

    Article  CAS  Google Scholar 

  28. M. Zhao, R. Peng, Q. Zheng, Q. Wang, M.-J. Chang, Y. Liu, Y.-L. Song, H.-L. Zhang, Broadband optical limiting response of a graphene–PbS nanohybrid. Nanoscale 7, 9268–9274 (2015). https://doi.org/10.1039/C5NR01088H

    Article  CAS  PubMed  Google Scholar 

  29. C.S. Suchand-Sandeep, A.K. Samal, T. Pradeep, R. Philip, Optical limiting properties of Te and Ag2Te nanowires. Chem. Phys. Lett. 485, 326–330 (2010). https://doi.org/10.1016/j.cplett.2009.12.065

    Article  CAS  Google Scholar 

  30. K. Sridharan, V. Tamilselvan, D. Yuvaraj, K. Narasimha Rao, R. Philip, Synthesis and nonlinear optical properties of lead telluride nanorods. Opt. Mater. 34, 639–645 (2012). https://doi.org/10.1016/j.optmat.2011.09.009

    Article  CAS  Google Scholar 

  31. A. Das, S. Ratha, R.K. Yadav, A. Mondal, C.S. Rout, K.V. Adarsh, Strong third-order nonlinear response and optical limiting of α-NiMoO4 nanoparticles. J Appl. Phys. 122, 013107 (2017). https://doi.org/10.1063/1.4992806

    Article  CAS  Google Scholar 

  32. M. Govindasamy, V. Mani, S.M. Chen, R. Karthik, K. Manibalan, R. Umamaheswari, MoS2 flowers grown on graphene/carbon nanotubes: A versatile substrate for electrochemical determination of hydrogen peroxide. Int. J. Electrochem. Sci. 11, 2954–2961 (2016). https://doi.org/10.20964/110402954

    Article  CAS  Google Scholar 

  33. M. Manikandan, S. Dhanuskodi, N. Maheswari, G. Muralidharan, C. Revathi, R.T. Rajendra Kumar, G. Mohan-Rao, High performance supercapacitor and non-enzymatic hydrogen peroxide sensor based on tellurium nanoparticles. Sens. Bio-Sensing Res. 13, 40–48 (2017). https://doi.org/10.1016/j.sbsr.2017.02.001

    Article  Google Scholar 

  34. M.R. Guascito, D. Chirizzi, C. Malitesta, T. Siciliano, A. Tepore, Te oxide nanowires as advanced materials for amperometric nonenzymatic hydrogen peroxide sensing. Talanta 115, 863–869 (2013). https://doi.org/10.1016/j.talanta.2013.06.032

    Article  CAS  PubMed  Google Scholar 

  35. M.R. Guascito, D. Chirizzi, C. Malitesta, E. Mazzotta, M. Siciliano, T. Siciliano, A. Tepore, A. Turco, Low-potential sensitive H2O2 detection based on composite micro tubular Te adsorbed on platinum electrode. Biosens. Bioelectron. 26, 3562–3569 (2011). https://doi.org/10.1016/j.bios.2011.02.002

    Article  CAS  PubMed  Google Scholar 

  36. M. Mayilmurugan, G. Rajamanickam, R. Perumalsamy, D. Sivasubramanian, Nickel cobalt telluride nanorods for sensing the hydrogen peroxide in living cells. ACS Omega 7, 14556–14561 (2022). https://doi.org/10.1021/acsomega.1c06007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was funded by the Researchers Supporting Project Number (RSP-2021/265) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Hydrothermal synthesis of NiTe Nanorods. Ferromagnetic behavior. Optical limiting of 2.44 J cm−2 at 200 µJ. Excellent sensitivity 6.35 µA µM−1 cm−2 with detection limit of 6 nM. The sensor exhibit stability, repeatability and reproducibility.

Corresponding author

Correspondence to M. Manikandan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original version of this article unfortunately contained a mistake. The project number in the Acknowledgments section was incorrect. The correct project number is RSP-2021/265. The original article has been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, M., Manikandan, E., Alshgari, R.A. et al. NiTe Magnetic Semiconductor Nanorods for Optical Limiting and Hydrogen Peroxide Sensor. J Inorg Organomet Polym 33, 1538–1547 (2023). https://doi.org/10.1007/s10904-023-02565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02565-4

Keywords

Navigation