Skip to main content
Log in

Construction of the peanut-like Co3O4 as anode materials for high-performance lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Uniform peanut-like Co3O4 was synthesized by a simple solvothermal method using ethylene glycol and dethylene glycol as solvents, and polyvinylpyrrolidone as surfactant. Scanning electron microscope (SEM) and transmission electron microscope (TEM) proved that the obtained Co3O4 product has uniform size, and each of the peanut-like Co3O4 was made up of ultra-small nanoparticles. In consideration of the special structure, peanut-like Co3O4 was used as an anode electrode for lithium-ion batteries (LIBs), and which displayed satisfied electrochemical performance with high specific capacity (about 810 mA h g−1), long cyclability (700 mA h g−1 after 70 cycles), and a good rate performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935. https://doi.org/10.1126/science.1212741

    Article  CAS  PubMed  Google Scholar 

  2. Gogotsi Y, Simon P (2011) True performance metrics in electrochemical energy storage. Science 334:917–918. https://doi.org/10.1126/science.1213003

    Article  CAS  Google Scholar 

  3. Ding YH, Sun JL, Liu X (2019) Carbon-decorated flower-like ZnO as high-performance anode materials for Li-ion batteries. Ionics 25:4129–4136. https://doi.org/10.1007/s11581-019-02981-y

    Article  CAS  Google Scholar 

  4. Liu Y, Wang W, Chen Q, Xu C, Cai DP, Zhan HB (2019) Resorcinol-formaldehyde resin-coated Prussian blue core-shell spheres and their derived unique yolk–shell FeS2@C spheres for lithium-ion batteries. Inorg Chem 58:1330–1338. https://doi.org/10.1021/acs.inorgchem.8b02897

    Article  CAS  PubMed  Google Scholar 

  5. Wang XH, Sun LM, Sun XL, Li XW, He DY (2017) Size-controllable porous NiO electrodes for high-performance lithium ion battery anodes. Mater Res Bull 96:533–537. https://doi.org/10.1016/j.materresbull.2017.04.046

    Article  CAS  Google Scholar 

  6. Li XW, Li SY, Zhang ZX, Liu CQ, Qu BH, Pu JX (2018) Ni3Se2 electrodes for high performance lithium-ion and sodium-ion batteries. Mater Lett 220:86–89. https://doi.org/10.1016/j.matlet.2018.03.004

    Article  CAS  Google Scholar 

  7. He W, Liu PF, Qu BH, Zheng ZM, Zheng HF, Deng P et al (2019) Uniform Na+ doping-induced defects in Li- and Mn-rich cathodes for high-performance lithium-ion batteries. Adv Sci 27:1802114. https://doi.org/10.1002/advs.201802114

    Article  CAS  Google Scholar 

  8. Wang XH, Li XW, Sun XL, Li F, Liu QM, Wang Q et al (2011) Nanostructured NiO electrode for high rate Li-ion batteries. J Mater Chem 21:3571–3573. https://doi.org/10.1039/C0JM04356G

    Article  CAS  Google Scholar 

  9. Liu TQ, Wang WQ, Yi MJ, Chen QD, Xu C et al (2018) Metal-organic framework derived porous ternary ZnCo2O4 nanoplate arrays grown on carbon cloth as binder-free electrodes for lithium-ion batteries. Chem Eng J 354:454–462. https://doi.org/10.1016/j.cej.2018.08.037

    Article  CAS  Google Scholar 

  10. Zhou G, Wu C, Wei YH, Li CC, Lian QW, Cui C et al (2016) Tufted NiCo2O4 nanoneedles grown on carbon nanofibers with advanced electrochemical property for lithium ion batteries. Electrochim Acta 222:1878–1886. https://doi.org/10.1016/j.electacta.2016.12.001

    Article  CAS  Google Scholar 

  11. Li CC, Yin XM, Chen LB, Li QH, Wang TH (2010) Synthesis of cobalt ion-based coordination polymer nanowires and their conversion into porous Co3O4 nanowires with good lithium storage properties. Chem Eur J 16:5215–5221. https://doi.org/10.1002/chem.200901632

    Article  CAS  PubMed  Google Scholar 

  12. Li HH, Xue Y, Wang JJ, Zhuo K-L, Wang Y-J, Bai G-Y (2018) Target construction of Co3O4 with an improved layer structure for highly efficient Li-storage properties. Inorg Chem Front 5:3135–3139. https://doi.org/10.1039/C8QI01050A

    Article  CAS  Google Scholar 

  13. Park JS, Shin DO, Lee CS, LeeY-G KJY, Kim KM et al (2018) Mesoporous perforated Co3O4 nanoparticles with a thin carbon layer for high performance Li-ion battery anodes. Electrochim Acta 264:376–385. https://doi.org/10.1016/j.electacta.2018.01.092

    Article  CAS  Google Scholar 

  14. Huang G, Zhang FF, Du XC, Qin YL, Yin DM, Wang LM (2015) Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9:1592–1599. https://doi.org/10.1021/nn506252u

    Article  CAS  PubMed  Google Scholar 

  15. Guo JX, Jiang B, Zhang X, Tang L, Wen Y-H (2015) Topochemical transformation of Co(II) coordination polymers to Co3O4 nanoplates for high-performance lithium storage. J Mater Chem A 3:2251–2257. https://doi.org/10.1039/C4TA05041J

    Article  CAS  Google Scholar 

  16. Yin JZ, Li RQ, Sheng ZH, Li QQ, Zhao PS, Cheng ZP et al (2018) Temperature-induced fabrication of 1D mesoporous Co3O4 for high performance Li-ion batteries. Mater Lett 233:122–125. https://doi.org/10.1016/j.matlet.2018.08.130

    Article  CAS  Google Scholar 

  17. Guo DY, Pan L, Hao JM, Han LM, Yi D, Wang YJ et al (2019) Nanosheets-in-nanotube Co3O4-carbon array design enables stable Li-ion storage. Carbon 147:501–509. https://doi.org/10.1016/j.carbon.2019.03.012

    Article  CAS  Google Scholar 

  18. Li HH, Li Z-Y, Wu X-L, Zhang L-L, Fan C-Y, Wang H-F et al (2016) Shale-like Co3O4 for high performance lithium/sodium ion batteries. J Mater Chem A 4:8242–8248. https://doi.org/10.1039/C6TA02417C

    Article  CAS  Google Scholar 

  19. Lou XW, Deng D, Lee JY, Feng J, Archer LA (2008) Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv Mater 20:258–262. https://doi.org/10.1002/adma.200702412

    Article  CAS  Google Scholar 

  20. Wu Z-S, Ren WC, Wen L, Gao LB, Zhao JP, Chen ZP, Zhou G, Li F, Cheng HM (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194. https://doi.org/10.1021/nn100740x

    Article  CAS  PubMed  Google Scholar 

  21. Zhong M, He W-W, Shuang W, Liu Y-Y, Hu T-L, Bu X-H (2018) Metal-organic framework derived core–shell Co/Co3O4@N-C nanocomposites as high performance anode materials for lithium ion batteries. Inorg Chem 57:4620–4628. https://doi.org/10.1021/acs.inorgchem.8b00365

    Article  CAS  PubMed  Google Scholar 

  22. Shao JX, Zhou H, Zhu MZ, Feng JH, Yuan AH (2018) Facile synthesis of metal-organic framework-derived Co3O4 with different morphologies coated graphene foam as integrated anodes for lithium-ion batteries. J Alloys Compd 768:1049–1057. https://doi.org/10.1016/j.jallcom.2018.07.290

    Article  CAS  Google Scholar 

  23. Wang XH, Sun LM, Susantyoko RA, Zhang Q (2016) A hierarchical 3D carbon nanostructure for high areal capacity and flexible lithium ion batteries. Carbon 98:504–509. https://doi.org/10.1016/j.carbon.2015.11.049

    Article  CAS  Google Scholar 

  24. Wang XH, Guan C, Sun LM, Susantyoko RA, Fan HJ, Zhang Q (2015) Highly stable and flexible Li-ion battery anodes based on TiO2 coated 3D carbon nanostructures. J Mater Chem A 3:15394–15398. https://doi.org/10.1039/C5TA04436G

    Article  CAS  Google Scholar 

  25. Mu JC, Wang EQ, Zhang YL, Zhang LP (2019) Sandwich-like Co3O4/graphene nanocomposites as anode material for lithium ion batteries. J Nanosci Nanotechnol 19:7819–7825. https://doi.org/10.1166/jnn.2019.16744

    Article  CAS  PubMed  Google Scholar 

  26. Wang L, Yuan YF, Chen Q, Zheng YQ, Yin SM, Guo SY (2019) Construction of Co3O4 three-dimensional mesoporous framework structures from zeolitic imidazolate framework-67 with enhanced lithium storage properties. Nanotechnology 30:435402. https://doi.org/10.1088/1361-6528/ab31ec

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work received funding support from the National Natural Science Foundation of China (Grant No. 21607176), the Natural Science Foundation of Hunan Province, China (Grant No. 2017JJ3516), the Education Department of Hunan Province (Grant No. 18C0247), and the Introduced Talent Research Foundation of Central South University of Forestry and Technology, China (Grant No. 2016YJ052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Yang or Wenlei Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Fang, X., Yang, T. et al. Construction of the peanut-like Co3O4 as anode materials for high-performance lithium-ion batteries. Ionics 26, 1261–1265 (2020). https://doi.org/10.1007/s11581-019-03312-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03312-x

Keywords

Navigation