Skip to main content

Advertisement

Log in

Activity of MWCNT sheets and effects of carbonaceous impurities toward the alkaline-based hydrogen evolution reaction

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Herein, we utilize freestanding sheets of multi-walled carbon nanotube (MWCNT), fabricated through a surface-engineered and controlled approach, to provide direct measurements of activities of MWCNT toward the hydrogen evolution reaction (HER). Since conventional fabrication methods of MWCNT materials can result in different carbonaceous residue contents (as reported in literature), the effect of carbonaceous impurities on the activity of MWCNT toward the HER becomes interesting (not previously recognized). Our results show that increasing amounts of carbonaceous impurities (in the form of carbon black additives) can initially increase the catalytic activity of MWCNT toward the HER, but will result in a lower electrochemical stability and lower activity at higher rates of charge transfer or longer times of charging, for which we propose an electrolytic transport mechanism, related to a debris-formation phenomenon occurring over carbonaceous impurities. The work suggests that carbonaceous impurities’ content should be accounted for during electrochemical studies of MWCNT toward the HER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. De Valladares MR (2017) Global trends and outlook for hydrogen. International Energy Agency. https://ieahydrogen.org/pdfs/Global-Outlook-and-Trends-for-Hydrogen_Dec2017_WEB.aspx. Accessed 8 Dec 2018

  2. Zhao G, Rui K, Dou SX, Sun W (2018) Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv Funct Mater 28:1803291. https://doi.org/10.1002/adfm.201803291

  3. O’hayre R, Cha S-W, Prinz FB, Colella W (2016) Fuel cell fundamentals. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  4. Du P, Eisenberg R (2012) Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ Sci 5:6012–6021. https://doi.org/10.1039/C2EE03250C

    Article  CAS  Google Scholar 

  5. Li DJ, Maiti UN, Lim J, Choi DS, Lee WJ, Oh Y, Lee GY, Kim SO (2014) Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett 14:1228–1233. https://doi.org/10.1021/nl404108a

    Article  CAS  PubMed  Google Scholar 

  6. Benck JD, Hellstern TR, Kibsgaard J, Chakthranont P, Jaramillo TF (2014) Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal 4:3957–3971. https://doi.org/10.1021/cs500923c

    Article  CAS  Google Scholar 

  7. Seo B, Jung GY, Sa YJ, Jeong HY, Cheon JY, Lee JH, Kim HY, Kim JC, Shin HS, Kwak SK, Joo SH (2015) Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction. ACS Nano 9:3728–3739. https://doi.org/10.1021/acsnano.5b00786

    Article  CAS  PubMed  Google Scholar 

  8. Ting LRL, Deng Y, Ma L, Zhang YJ, Peterson AA, Yeo BS (2016) Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catal 6:861–867. https://doi.org/10.1021/acscatal.5b02369

    Article  CAS  Google Scholar 

  9. Wu L, Wang X, Sun Y, Liu Y, Li J (2015) Flawed MoO2 belts transformed from MoO3 on a graphene template for the hydrogen evolution reaction. Nanoscale 7:7040–7044. https://doi.org/10.1039/c4nr06624c

    Article  CAS  PubMed  Google Scholar 

  10. Zhu X, Liu M, Liu Y, Chen R, Nie Z, Li J, Yao S (2016) Carbon-coated hollow mesoporous FeP microcubes: an efficient and stable electrocatalyst for hydrogen evolution. J Mater Chem A 4:8974–8977. https://doi.org/10.1039/c6ta01923d

    Article  CAS  Google Scholar 

  11. Sun M, Liu H, Qu J, Li J (2016) Earth-rich transition metal phosphide for energy conversion and storage. Adv Energy Mater 6. https://doi.org/10.1002/aenm.201600087

  12. Callejas JF, Read CG, Popczun EJ, McEnaney JM, Schaak RE (2015) Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chem Mater 27:3769–3774. https://doi.org/10.1021/acs.chemmater.5b01284

    Article  CAS  Google Scholar 

  13. Liu M, Li J (2016) Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS Appl Mater Interfaces 8:2158–2165. https://doi.org/10.1021/acsami.5b10727

    Article  CAS  PubMed  Google Scholar 

  14. Pu Z, Liu Q, Jiang P, Asiri AM, Obaid AY, Sun X (2014) CoP nanosheet arrays supported on a Ti plate: an efficient cathode for electrochemical hydrogen evolution. Chem Mater 26:4326–4329. https://doi.org/10.1021/cm501273s

    Article  CAS  Google Scholar 

  15. Kukunuri S, Austeria PM, Sampath S (2016) Electrically conducting palladium selenide (Pd4Se, Pd17Se15, Pd7Se4) phases: synthesis and activity towards hydrogen evolution reaction. Chem Commun 52:206–209. https://doi.org/10.1039/c5cc06730h

    Article  CAS  Google Scholar 

  16. Zhang H, Yang B, Wu X, Li Z, Lei L, Zhang X (2015) Polymorphic CoSe2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction. ACS Appl Mater Interfaces 7:1772–1779. https://doi.org/10.1021/am507373g

    Article  CAS  PubMed  Google Scholar 

  17. Xiao M, Miao Y, Tian Y, Yan Y (2015) Synthesizing nanoparticles of Co-P-Se compounds as electrocatalysts for the hydrogen evolution reaction. Electrochim Acta 165:206–210. https://doi.org/10.1016/j.electacta.2015.03.023

    Article  CAS  Google Scholar 

  18. Liu Q, Shi J, Hu J, Asiri AM, Luo Y, Sun X (2015) CoSe2 nanowires array as a 3D electrode for highly efficient electrochemical hydrogen evolution. ACS Appl Mater Interfaces 7:3877–3881. https://doi.org/10.1021/am509185x

    Article  CAS  PubMed  Google Scholar 

  19. Bai N, Li Q, Mao D, Li D, Dong H (2016) One-step electrodeposition of Co/CoP film on Ni foam for efficient hydrogen evolution in alkaline solution. ACS Appl Mater Interfaces 8:29400–29407. https://doi.org/10.1021/acsami.6b07785

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Liang Y (2018) Nickel Hydr (oxy) oxide nanoparticles on metallic MoS2 nanosheets: a synergistic electrocatalyst for hydrogen evolution reaction. Adv Sci 5:1700644

    Article  CAS  Google Scholar 

  21. Weng Z, Liu W, Yin L-C, Fang R, Li M, Altman EI, Fan Q, Li F, Cheng HM, Wang H (2015) Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis. Nano Lett 15:7704–7710

    Article  CAS  PubMed  Google Scholar 

  22. Feng J-X, Xu H, Dong Y-T, Lu XF, Tong YX, Li GR (2017) Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angew Chem Int Ed 56:2960–2964

    Article  CAS  Google Scholar 

  23. Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z (2015) Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun 6:6430

    Article  CAS  PubMed  Google Scholar 

  24. Xing Z, Wang D, Li Q, Asiri AM, Sun X (2016) Self-standing Ni-WN heterostructure nanowires array: a highly efficient catalytic cathode for hydrogen evolution reaction in alkaline solution. Electrochim Acta 210:729–733

    Article  CAS  Google Scholar 

  25. Xing Z, Han C, Wang D, Li Q, Yang X (2017) Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS Catal 7:7131–7135. https://doi.org/10.1021/acscatal.7b01994

    Article  CAS  Google Scholar 

  26. Zhang B, Liu J, Wang J, Ruan Y, Ji X, Xu K, Chen C, Wan H, Miao L, Jiang J (2017) Interface engineering: the Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 37:74–80. https://doi.org/10.1016/j.nanoen.2017.05.011

    Article  CAS  Google Scholar 

  27. Yan X, Tian L, He M, Chen X (2015) Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett 15:6015–6021

    Article  CAS  PubMed  Google Scholar 

  28. Wang Z, Du H, Liu Z et al (2018) Interface engineering of a CeO2–Cu3P nanoarray for efficient alkaline hydrogen evolution. Nanoscale 10:2213–2217. https://doi.org/10.1039/C7NR08472B

    Article  CAS  PubMed  Google Scholar 

  29. Zhu L, Lin H, Li Y, Liao F, Lifshitz Y, Sheng M, Lee ST, Shao M (2016) A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials. Nat Commun 7:12272. https://doi.org/10.1038/ncomms12272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Z, Liu Z, Du G et al (2018) Ultrafine PtO2 nanoparticles coupled with a Co(OH)F nanowire array for enhanced hydrogen evolution. Chem Commun 54:810–813. https://doi.org/10.1039/C7CC08870A

    Article  CAS  Google Scholar 

  31. Zhang R, Ren X, Hao S, Ge R, Liu Z, Asiri AM, Chen L, Zhang Q, Sun X (2018) Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis. J Mater Chem A 6:1985–1990. https://doi.org/10.1039/C7TA10237B

    Article  CAS  Google Scholar 

  32. Gao M, Chen L, Zhang Z, Sun X, Zhang S (2018) Interface engineering of the Ni(OH)2–Ni3N nanoarray heterostructure for the alkaline hydrogen evolution reaction. J Mater Chem A 6:833–836. https://doi.org/10.1039/C7TA08907D

    Article  CAS  Google Scholar 

  33. Xie L, Ren X, Liu Q, Cui G, Ge R, Asiri AM, Sun X, Zhang Q, Chen L (2018) A Ni(OH)2–PtO2 hybrid nanosheet array with ultralow Pt loading toward efficient and durable alkaline hydrogen evolution. J Mater Chem A 6:1967–1970. https://doi.org/10.1039/C7TA09990H

    Article  CAS  Google Scholar 

  34. Mustafa I, Lopez I, Younes H, Susantyoko RA, al-Rub RA, Almheiri S (2017) Fabrication of freestanding sheets of multiwalled carbon nanotubes (buckypapers) for vanadium redox flow batteries and effects of fabrication variables on electrochemical performance. Electrochim Acta 230:222–235. https://doi.org/10.1016/j.electacta.2017.01.186

    Article  CAS  Google Scholar 

  35. Britto PJ, Santhanam KSV, Rubio A, Alonso JA, Ajayan PM (1999) Improved charge transfer at carbon nanotube electrodes. Adv Mater 11:154–157. https://doi.org/10.1002/(SICI)1521-4095(199902)11:2<154::AID-ADMA154>3.0.CO;2-B

    Article  CAS  Google Scholar 

  36. Kostov MK, Santiso EE, George AM, Gubbins KE, Nardelli MB (2005) Dissociation of water on defective carbon substrates. Phys Rev Lett 95:136105. https://doi.org/10.1103/PhysRevLett.95.136105

    Article  CAS  PubMed  Google Scholar 

  37. Guo ZH, Yan XH, Yang YR, Deng YX, Lu D, Wang DL (2008) Dissociation of water molecules induced by charged-defective carbon nanotubes. J Phys Chem C 112:4618–4621. https://doi.org/10.1021/jp709985w

    Article  CAS  Google Scholar 

  38. Seehra MS, Bollineni S (2009) Nanocarbon boosts energy-efficient hydrogen production in carbon-assisted water electrolysis. Int J Hydrog Energy 34:6078–6084. https://doi.org/10.1016/j.ijhydene.2009.06.023

    Article  CAS  Google Scholar 

  39. Liu Y, Yu H, Quan X, Chen S, Zhao H, Zhang Y (2014) Efficient and durable hydrogen evolution electrocatalyst based on nonmetallic nitrogen doped hexagonal carbon. Sci Rep 4:6843. https://doi.org/10.1038/srep06843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shui J, Wang M, Du F, Dai L (2015) N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci Adv 1:e1400129. https://doi.org/10.1126/sciadv.1400129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Young J (2017) Non-precious metal catalysts based on carbon nanomaterials for oxygen and hydrogen electrocatalysis. Graduate School of UNIST. https://scholarworks.unist.ac.kr/handle/201301/23556. Accessed 12 Dec 2018

  42. Dubey PK, Sinha ASK, Talapatra S, Koratkar N, Ajayan PM, Srivastava ON (2010) Hydrogen generation by water electrolysis using carbon nanotube anode. Int J Hydrog Energy 35:3945–3950. https://doi.org/10.1016/j.ijhydene.2010.01.139

    Article  CAS  Google Scholar 

  43. Patel CRP, Tripathi P, Vishwakarma AK, Talat M, Soni PK, Yadav TP, Srivastava ON (2018) Enhanced hydrogen generation by water electrolysis employing carbon nano-structure composites. Int J Hydrog Energy 43:3180–3189. https://doi.org/10.1016/j.ijhydene.2017.12.142

    Article  CAS  Google Scholar 

  44. Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG (2006) Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes. Angew Chem Int Ed 45:2533–2537

    Article  CAS  Google Scholar 

  45. Feng Y, Zhou G, Wang G, Qu M, Yu Z (2003) Removal of some impurities from carbon nanotubes. Chem Phys Lett 375:645–648

    Article  CAS  Google Scholar 

  46. Yang X, Li X, Ma X, Jia L, Zhu L (2013) Carbonaceous impurities greatly impact on the electrochemical capacitance of graphene. RSC Adv 3:6752–6755. https://doi.org/10.1039/C3RA23024D

    Article  CAS  Google Scholar 

  47. Ambrosi A, Pumera M (2011) Amorphous carbon impurities play an active role in redox processes of carbon nanotubes. https://doi.org/10.1021/jp209734t

  48. Pumera M (2009) The electrochemistry of carbon nanotubes: fundamentals and applications. Chem Eur J 15:4970–4978

    Article  CAS  PubMed  Google Scholar 

  49. Ambrosi A, Pumera M (2010) Nanographite impurities dominate electrochemistry of carbon nanotubes. Chem Eur J 16:10946–10949. https://doi.org/10.1002/chem.201001584

    Article  CAS  PubMed  Google Scholar 

  50. Pumera M, Ambrosi A, Chng ELK (2012) Impurities in graphenes and carbon nanotubes and their influence on the redox properties. Chem Sci 3:3347–3355

    Article  CAS  Google Scholar 

  51. Susantyoko RA, Karam Z, Alkhoori S, Mustafa I, Wu CH, Almheiri S (2017) A surface-engineered tape-casting fabrication technique toward the commercialisation of freestanding carbon nanotube sheets. J Mater Chem A 5:19255–19266. https://doi.org/10.1039/C7TA04999D

    Article  CAS  Google Scholar 

  52. Mustafa I, Bamgbopa MO, Alraeesi E, Shao-Horn Y, Sun H, Almheiri S (2017) Insights on the electrochemical activity of porous carbonaceous electrodes in non-aqueous vanadium redox flow batteries. J Electrochem Soc 164:A3673–A3683. https://doi.org/10.1149/2.0621714jes

    Article  CAS  Google Scholar 

  53. Karam Z, Susantyoko RA, Alhammadi A, et al (2018) Development of surface-engineered tape-casting method for fabricating freestanding carbon nanotube sheets containing Fe2O3 nanoparticles for flexible batteries. Adv Eng Mater n/a-n/a https://doi.org/10.1002/adem.201701019

  54. Mustafa I, Al Shehhi A, Al Hammadi A et al (2018) Effects of carbonaceous impurities on the electrochemical activity of multiwalled carbon nanotube electrodes for vanadium redox flow batteries. Carbon 131:47–59. https://doi.org/10.1016/j.carbon.2018.01.069

    Article  CAS  Google Scholar 

  55. Susantyoko RA, Parveen F, Mustafa I, Almheiri S (2018) MWCNT/activated-carbon freestanding sheets: a different approach to fabricate flexible electrodes for supercapacitors. Ionics. 25:265–273. https://doi.org/10.1007/s11581-018-2585-4

    Article  CAS  Google Scholar 

  56. Shah TK, Malecki HC, Basantkumar RR, et al (2014) Carbon nanostructures and methods of making the same. US20140093728 A1

  57. Das R, Hamid SBA, Ali ME, Yongzhi SR and W (2015) Carbon nanotubes characterization by X-ray powder diffraction – a review. Curr Nanosci. https://doi.org/10.2174/1573413710666140818210043

  58. Shalom M, Gimenez S, Schipper F, Herraiz-Cardona I, Bisquert J, Antonietti M. (2014) Controlled carbon nitride growth on surfaces for hydrogen evolution electrodes. https://doi.org/10.1002/anie.201309415

  59. Zhang B, Wang H-H, Su H, Lv LB, Zhao TJ, Ge JM, Wei X, Wang KX, Li XH, Chen JS (2016) Nitrogen-doped graphene microtubes with opened inner voids: highly efficient metal-free electrocatalysts for alkaline hydrogen evolution reaction. Nano Res 9:2606–2615. https://doi.org/10.1007/s12274-016-1147-1

    Article  CAS  Google Scholar 

  60. Peng Z, Yang S, Jia D, da P, He P, al-Enizi AM, Ding G, Xie X, Zheng G (2016) Homologous metal-free electrocatalysts grown on three-dimensional carbon networks for overall water splitting in acidic and alkaline media. J Mater Chem A 4:12878–12883

    Article  CAS  Google Scholar 

  61. Qu K, Zheng Y, Jiao Y, Zhang X, Dai S, Qiao SZ (2017) Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting. Adv Energy Mater 7:1602068

    Article  CAS  Google Scholar 

  62. Tian J, Liu Q, Asiri AM, Sun X (2014) Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc 136:7587–7590

    Article  CAS  PubMed  Google Scholar 

  63. Tilak BV, Rader CG, Rangarajan SK (1977) Techniques for characterizing porous electrodes I : determination of the double layer capacity. J Electrochem Soc 124:1879–1886. https://doi.org/10.1149/1.2133179

    Article  CAS  Google Scholar 

  64. Trasatti S, Petrii OA (1992) Real surface area measurements in electrochemistry. J Electroanal Chem 327:353–376. https://doi.org/10.1016/0022-0728(92)80162-W

    Article  CAS  Google Scholar 

  65. Shao L, Tobias G, Salzmann CG, Ballesteros B, Hong SY, Crossley A, Davis BG, Green MLH (2007) Removal of amorphous carbon for the efficient sidewall functionalisation of single-walled carbon nanotubes. Chem Commun 0:5090–5092. https://doi.org/10.1039/B712614J

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This publication is based upon work supported by the Khalifa University of Science and Technology under Award No. 8474000003. The authors acknowledge the Cooperative Agreement between the Masdar Institute of Science and Technology (Masdar Institute), Abu Dhabi, UAE and the Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. The authors acknowledge the support of Applied NanoStructured Solutions LLC, a Lockheed Martin Company, for providing the carbon nanostructured flakes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Almarzooqi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, I., Susantyoko, R., Alshehhi, A. et al. Activity of MWCNT sheets and effects of carbonaceous impurities toward the alkaline-based hydrogen evolution reaction. Ionics 25, 4285–4294 (2019). https://doi.org/10.1007/s11581-019-03008-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03008-2

Keywords

Navigation