Skip to main content

One-Dimensional Carbon for Electrocatalytic Activities

  • Chapter
  • First Online:
NanoCarbon: A Wonder Material for Energy Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 92 Accesses

Abstract

One-dimensional (1D) carbon structures like carbon nanotubes (CNTs), carbon nanofibers (CNFs), and graphene ribbons, for instance, have drawn a lot of interest in the field of electrocatalysis because of their distinctive characteristics and superior electrochemical performance. The purpose of this chapter is to give a general review of the electrocatalytic properties of 1D carbon nanomaterials and their prospective uses in a range of energy conversion and storage technologies. The main attractive properties of these carbon structures are based on their satisfactory electrocatalytic activity for several processes due to their high surface area as well as conductivity. The first section provides a brief overview of some of the main theoretical aspects related to technologies such as water-splitting electrolyzers, fuel cells, and metal-air batteries. From that, some of their main electrochemical reactions such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen oxidation reaction (HOR) are discussed based on the application of their respective electrochemical devices. The second section provides some of the main techniques and approaches utilized for the synthesis of 1D carbon-based materials while providing some of their main advantages and drawbacks. The third section provides an in-depth discussion of some of the most recent works from the literature under the scope of the electrochemical performance of 1D carbon-based materials and the main phenomena that justify their use in such technologies. Lastly, an outlook and future aspects regarding the main advantages and current hurdles on the use of 1D carbon-based material are provided to elucidate some of the main issues for the readers while providing some insight for future experimental design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger, I., Shipman, M.A., Symes, M.D.: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017)

    Article  CAS  Google Scholar 

  2. Zou, X., Zhang, Y.: Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. O’hayre, R., Cha, S.-W., Colella, W., Prinz, F.B.: Fuel Cell Fundamentals. Wiley (2016)

    Google Scholar 

  4. Deng, Y.-P., Jiang, Y., Liang, R., Zhang, S.-J., Luo, D., Hu, Y., Wang, X., Li, J.-T., Yu, A., Chen, Z.: Dynamic electrocatalyst with current-driven oxyhydroxide shell for rechargeable zinc-air battery. Nat. Commun. 11, 1952 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tan, P., Chen, B., Xu, H., Zhang, H., Cai, W., Ni, M., Liu, M., Shao, Z.: Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives. Energy Environ. Sci. 10, 2056–2080 (2017)

    Article  CAS  Google Scholar 

  6. Wang, J., Kong, H., Zhang, J., Hao, Y., Shao, Z., Ciucci, F.: Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 116, 100717 (2021)

    Article  CAS  Google Scholar 

  7. Jiang, H., Gu, J., Zheng, X., Liu, M., Qiu, X., Wang, L., Li, W., Chen, Z., Ji, X., Li, J.: Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 12, 322–333 (2019)

    Article  CAS  Google Scholar 

  8. Li, W., Liu, J., Zhao, D.: Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016)

    Article  CAS  Google Scholar 

  9. Jiao, Y., Zheng, Y., Jaroniec, M., Qiao, S.Z.: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. Cambré, S., Liu, M., Levshov, D., Otsuka, K., Maruyama, S., Xiang, R.: Nanotube-based 1D heterostructures Coupled by van der Waals forces. Small 17, 2102585 (2021)

    Article  Google Scholar 

  11. Li, X., Wang, X., Zhang, L., Lee, S., Dai, H.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science (80–) 319, 1229–1232 (2008)

    Google Scholar 

  12. Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., Müllen, K., Fasel, R.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010)

    Article  CAS  PubMed  Google Scholar 

  14. Ren, J., Li, F.F., Lau, J., González-Urbina, L., Licht, S.: One-pot synthesis of carbon nanofibers from CO2. Nano Lett. 15, 6142–6148 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, H., Wang, J., Chen, C., Chen, D., Gao, Y., Saccoccio, M., Ciucci, F.: A bi-functional catalyst for oxygen reduction and oxygen evolution reactions from used baby diapers: α-Fe2O3 wrapped in P and S dual doped graphitic carbon. RSC Adv. 6, 64258–64265 (2016)

    Article  CAS  Google Scholar 

  16. Wei, X., Luo, X., Wang, H., Gu, W., Cai, W., Lin, Y., Zhu, C.: Highly-defective Fe–N–C catalysts towards pH-Universal oxygen reduction reaction. Appl. Catal. B Environ. 263, 118347 (2020)

    Article  CAS  Google Scholar 

  17. Wang, J., Ciucci, F.: In-situ synthesis of bimetallic phosphide with carbon tubes as an active electrocatalyst for oxygen evolution reaction. Appl. Catal. B Environ. 254, 292–299 (2019)

    Article  CAS  Google Scholar 

  18. Guo, H., Feng, Q., Zhu, J., Xu, J., Li, Q., Liu, S., Xu, K., Zhang, C., Liu, T.: Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from a metal–organic framework for tri-functional ORR, OER and HER electrocatalysis. J Mater Chem A 7, 3664–3672 (2019)

    Article  CAS  Google Scholar 

  19. Zhang, H.-M., Zhao, Y., Zhang, Y., Zhang, M., Cheng, M., Yu, J., Liu, H., Ji, M., Zhu, C., Xu, J.: Fe3O4 encapsulated in porous carbon nanobowls as efficient oxygen reduction reaction catalyst for Zn-air batteries. Chem. Eng. J. 375, 122058 (2019)

    Article  CAS  Google Scholar 

  20. Santori, P.G., Speck, F.D., Li, J., Zitolo, A., Jia, Q., Mukerjee, S., Cherevko, S., Jaouen, F.: Effect of pyrolysis atmosphere and electrolyte pH on the oxygen reduction activity, stability and spectroscopic signature of FeNx moieties in Fe–N–C catalysts. J. Electrochem. Soc. 166, F3311 (2019)

    Article  CAS  Google Scholar 

  21. Zhang, L.-M., Wang, Z.-B., Zhang, J.-J., Sui, X.-L., Zhao, L., Gu, D.-M.: Honeycomb-like mesoporous nitrogen-doped carbon supported Pt catalyst for methanol electrooxidation. Carbon N Y 93, 1050–1058 (2015)

    Article  CAS  Google Scholar 

  22. Zahid, M.U., Pervaiz, E., Hussain, A., Shahzad, M.I., Niazi, M.B.K.: Synthesis of carbon nanomaterials from different pyrolysis techniques: a review. Mater. Res. Exp. 5, 52002 (2018)

    Article  Google Scholar 

  23. Acomb, J.C., Wu, C., Williams, P.T.: Control of steam input to the pyrolysis-gasification of waste plastics for improved production of hydrogen or carbon nanotubes. Appl. Catal. B Environ. 147, 571–584 (2014)

    Article  CAS  Google Scholar 

  24. Arnaiz, N., Gomez-Rico, M.F., Martin Gullon, I., Font, R.: Production of carbon nanotubes from polyethylene pyrolysis gas and effect of temperature. Ind. Eng. Chem. Res. 52, 14847–14854 (2013)

    Article  CAS  Google Scholar 

  25. Chung, Y.-H., Jou, S.: Carbon nanotubes from catalytic pyrolysis of polypropylene. Mater. Chem. Phys. 92, 256–259 (2005)

    Article  CAS  Google Scholar 

  26. Kukovitsky, E.F., L’vov, S.G., Sainov, N.A., Shustov, V.A.: CVD growth of carbon nanotube films on nickel substrates. Appl. Surf. Sci. 215, 201–208 (2003)

    Google Scholar 

  27. Kobayashi, Y., Nakashima, H., Takagi, D., Homma, Y.: CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst. Thin Solid Films 464–465, 286–289 (2004)

    Article  Google Scholar 

  28. Ying, L.S., Bin Mohd Salleh, M.A., Mohamed Yusoff, H.B., Abdul Rashid SB, Razak J.B.A.: Continuous production of carbon nanotubes—a review. J. Ind. Eng. Chem. 17, 367–376 (2011)

    Google Scholar 

  29. Manawi, Y.M., Ihsanullah, S.A., Al-Ansari, T., Atieh, M.A.: A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials (Basel) 11, 822 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang, J., Kim, J., Choi, S., Wang, H., Lim, J.: A review of carbon-supported nonprecious metals as energy-related electrocatalysts. Small Methods 4, 2000621 (2020)

    Article  CAS  Google Scholar 

  31. Arora, N., Sharma, N.N.: Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam. Relat. Mater. 50, 135–150 (2014)

    Article  CAS  Google Scholar 

  32. Pantano, M.F., Kuljanishvili, I.: Advances in mechanical characterization of 1D and 2D nanomaterials: progress and prospects. Nano Exp. 1, 022001 (2020)

    Article  Google Scholar 

  33. Moo, J.G.S., Veksha, A., Oh, W.-D., Giannis, A., Udayanga, W.D.C., Lin, S.-X., Ge, L., Lisak, G.: Plastic derived carbon nanotubes for electrocatalytic oxygen reduction reaction: effects of plastic feedstock and synthesis temperature. Electrochem. Commun. 101, 11–18 (2019)

    Article  CAS  Google Scholar 

  34. Luo, H., Zhang, X., Zhu, H., Zhang, K., Yang, F., Xu, K., Yu, S., Guo, D.: Tailoring d-band center over electron traversing effect of NiM@C-CoP (M=Zn, Mo, Ni, Co) for high-performance electrocatalysis hydrogen evolution. J. Mater. Sci. Technol. 166, 164–172 (2023)

    Article  Google Scholar 

  35. Xia, B.Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H.: One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003)

    Article  CAS  Google Scholar 

  36. Mu, J., Chen, B., Guo, Z., Zhang, M., Zhang, Z., Zhang, P., Shao, C., Liu, Y.: Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials. Nanoscale 3, 5034–5040 (2011)

    Article  CAS  Google Scholar 

  37. Gong, M., Li, Y., Wang, H., Liang, Y., Wu, J.Z., Zhou, J., Wang, J., Regier, T., Wei, F., Dai, H.: An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. Yu, X., Hua, T., Liu, X., Yan, Z., Xu, P., Du, P.: Nickel-based thin film on multiwalled carbon nanotubes as an efficient bifunctional electrocatalyst for water splitting. ACS Appl. Mater. Interfaces 6, 15395–15402 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. Zhou, X., Xia, Z., Zhang, Z., Ma, Y., Qu, Y.: One-step synthesis of multi-walled carbon nanotubes/ultra-thin Ni(OH)2 nanoplate composite as efficient catalysts for water oxidation. J. Mater. Chem. A 2, 11799–11806 (2014)

    Article  CAS  Google Scholar 

  40. Cheng, Y., Shen, P.K., Jiang, S.P.: NiOx nanoparticles supported on polyethylenimine functionalized CNTs as efficient electrocatalysts for supercapacitor and oxygen evolution reaction. Int. J. Hydrogen Energy 39, 20662–20670 (2014)

    Article  CAS  Google Scholar 

  41. Mette, K., Bergmann, A., Tessonnier, J.-P., Hävecker, M., Yao, L., Ressler, T., Schlögl, R., Strasser, P., Behrens, M.: Nanostructured manganese oxide supported on carbon nanotubes for electrocatalytic water splitting. ChemCatChem 4, 851–862 (2012)

    Article  CAS  Google Scholar 

  42. Wu, J., Xue, Y., Yan, X., Yan, W., Cheng, Q., Xie, Y.: Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res. 5, 521–530 (2012)

    Article  CAS  Google Scholar 

  43. Jia, Y., Zhang, L., Du, A., Gao, G., Chen, J., Yan, X., Brown, C.L., Yao, X.: Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28, 9532–9538 (2016)

    Article  CAS  PubMed  Google Scholar 

  44. Jiao, Y., Zheng, Y., Davey, K., Qiao, S.-Z.: Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy 1, 16130 (2016)

    Article  CAS  Google Scholar 

  45. Deng, J., Ren, P., Deng, D., Bao, X.: Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chemie Int. Ed. 54, 2100–2104 (2015)

    Article  CAS  Google Scholar 

  46. Chen, X., Paul, R., Dai, L.: Carbon-based supercapacitors for efficient energy storage. Natl. Sci. Rev. 4, 453–489 (2017)

    Article  CAS  Google Scholar 

  47. Zhang, L., Jia, Y., Gao, G., Yan, X., Chen, N., Chen, J., Soo, M.T., Wood, B., Yang, D., Du, A.: Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 4, 285–297 (2018)

    Article  CAS  Google Scholar 

  48. Cheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Y., Chow, J.C., Watson, J.G., Cao, J., Zhang, R.: PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology 18, 96–104 (2015)

    Article  CAS  Google Scholar 

  49. Cheng, Y., Zhang, J., Jiang, S.P.: Are metal-free pristine carbon nanotubes electrocatalytically active? Chem. Commun. 51, 13764–13767 (2015)

    Article  CAS  Google Scholar 

  50. Cheng, Y., Xu, C., Jia, L., Gale, J.D., Zhang, L., Liu, C., Shen, P.K., Jiang, S.P.: Pristine carbon nanotubes as non-metal electrocatalysts for oxygen evolution reaction of water splitting. Appl. Catal. B Environ. 163, 96–104 (2015)

    Article  CAS  Google Scholar 

  51. Zhao, Y., Nakamura, R., Kamiya, K., Nakanishi, S., Hashimoto, K.: Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 4, 2390 (2013)

    Article  PubMed  Google Scholar 

  52. Li, Y., Zhou, W., Wang, H., Xie, L., Liang, Y., Wei, F., Idrobo, J.-C., Pennycook, S.J., Dai, H.: An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes. Nat. Nanotechnol. 7, 394–400 (2012)

    Article  CAS  PubMed  Google Scholar 

  53. Lu, X., Chan, H.M., Sun, C.-L., Tseng, C.-M., Zhao, C.: Interconnected core–shell carbon nanotube–graphene nanoribbon scaffolds for anchoring cobalt oxides as bifunctional electrocatalysts for oxygen evolution and reduction. J. Mater. Chem. A 3, 13371–13376 (2015)

    Article  CAS  Google Scholar 

  54. Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., Dai, H.: Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011)

    Article  CAS  PubMed  Google Scholar 

  55. Yu, H., Fisher, A., Cheng, D., Cao, D.: Cu, N-codoped hierarchical porous carbons as electrocatalysts for oxygen reduction reaction. ACS Appl. Mater. Interfaces 8, 21431–21439 (2016)

    Article  CAS  PubMed  Google Scholar 

  56. Lai, Q., Zheng, L., Liang, Y., He, J., Zhao, J., Chen, J.: Metal–organic-framework-derived Fe–N/C electrocatalyst with five-coordinated Fe-Nx sites for advanced oxygen reduction in acid media. ACS Catal. 7, 1655–1663 (2017)

    Article  CAS  Google Scholar 

  57. Yang, L., Lv, Y., Cao, D.: Co, N-codoped nanotube/graphene 1D/2D heterostructure for efficient oxygen reduction and hydrogen evolution reactions. J Mater Chem A 6, 3926–3932 (2018)

    Article  CAS  Google Scholar 

  58. Yin, P., Yao, T., Wu, Y., Zheng, L., Lin, Y., Liu, W., Ju, H., Zhu, J., Hong, X., Deng, Z.: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chemie 128, 10958–10963 (2016)

    Article  Google Scholar 

  59. Han, Y., Wang, Y.-G., Chen, W., Xu, R., Zheng, L., Zhang, J., Luo, J., Shen, R.-A., Zhu, Y., Cheong, W.-C., Chen, C., Peng, Q., Wang, D., Li, Y.: Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 139, 17269–17272 (2017)

    Article  CAS  PubMed  Google Scholar 

  60. Fan, Z., Yan, J., Zhi, L., Zhang, Q., Wei, T., Feng, J., Zhang, M., Qian, W., Wei, F.: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 3723–3728 (2010)

    Article  CAS  PubMed  Google Scholar 

  61. Chen, P., Xiao, T.-Y., Qian, Y.-H., Li, S.-S., Yu, S.-H.: A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity. Adv. Mater. 25, 3192–3196 (2013)

    Article  CAS  PubMed  Google Scholar 

  62. Liu, Q., Tian, J., Cui, W., Jiang, P., Cheng, N., Asiri, A.M., Sun, X.: Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chemie Int. Ed. 53, 6710–6714 (2014)

    Article  CAS  Google Scholar 

  63. Pan, Y., Yang, N., Chen, Y., Lin, Y., Li, Y., Liu, Y., Liu, C.: Nickel phosphide nanoparticles-nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity. J. Power. Sourc. 297, 45–52 (2015)

    Article  CAS  Google Scholar 

  64. Zhang, B., Liu, J., Wang, J., Ruan, Y., Ji, X., Xu, K., Chen, C., Wan, H., Miao, L., Jiang, J.: Interface engineering: the Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 37, 74–80 (2017)

    Article  CAS  Google Scholar 

  65. Zhang, Y., Wang, Y., Wang, T., Wu, N., Wang, Y., Sun, Y., Fu, L., Du, Y., Zhong, W.: Heterostructure of 2D CoP Nanosheets/1D carbon nanotubes to significantly boost the alkaline hydrogen evolution. Adv. Mater. Interfaces 7, 1901302 (2020)

    Article  CAS  Google Scholar 

  66. Wang, J., Xu, F., Jin, H., Chen, Y., Wang, Y.: Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 29, 1605838 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maley, N., Patel, P., de Souza, F.M., Gupta, R.K. (2024). One-Dimensional Carbon for Electrocatalytic Activities. In: Gupta, R.K. (eds) NanoCarbon: A Wonder Material for Energy Applications. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-9935-4_5

Download citation

Publish with us

Policies and ethics