Skip to main content

Advertisement

Log in

Influence of thiourea concentration on the CuS nanostructures and identification of the most suited electrolyte for high energy density supercapacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The energy density of a supercapacitor is largely reliant on functional parameters of electrode material and electrolyte. To improve the energy density of the CuS asymmetric device, optimization of sulfur concentration (thiourea) in the precursor and identification of the most suited electrolyte have been attempted. The changes in thiourea concentration greatly affect the physical and electrochemical features of CuS. The highest specific capacitance of 298 F g−1 at 2 A g−1 was obtained for copper sulfide nanoparticles prepared with 1:2 ratio of copper acetate and thiourea (C3). It exhibits excellent cycling stability in 2 M KOH electrolyte. In addition, to evaluate the most suited electrolyte, electrochemical studies were performed with different electrolytes (H2SO4, Na2SO4, KOH and LiClO4 in propylene carbonate). Based on the electrochemical results, it was found that an outstanding performance has originated from H2SO4 electrolyte (773 F g−1 at 2 A g−1). The C3 electrode exhibits no perceptible degradation in capacity even after 4000 charge-discharge cycles in acidic electrolyte. Further, for real-life applications, an asymmetric device was fabricated using C3 as a cathode and PVA/ H2SO4 as electrolyte. The device attained a highest energy density of 21 W h kg−1 at a power density of 310 W kg−1. Furthermore, lighting up of red and yellow LEDs is demonstrated using the fabricated asymmetric device. The efficient device performances concluded that C3 is a potential cathode material for future supercapacitor applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wilde G (ed) (2009) Nanostructured materials. Vol. 1. Elsevier

  2. Lai CH, Huang KW, Cheng JH, Lee CY, Hwang BJ, Chen LJ (2010) Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries. J Mater Chem 20(32):6638–6645

    Article  CAS  Google Scholar 

  3. Lai CH, Lu MY, Chen LJ (2012) Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J Mater Chem 22(1):19–30

    Article  CAS  Google Scholar 

  4. Gao MR, Xu YF, Jiang J, Yu SH (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 42(7):2986–3017

    Article  CAS  Google Scholar 

  5. Gross S, Vittadini A, Dengo N (2017) Functionalisation of colloidal transition metal sulphides nanocrystals: a fascinating and challenging playground for the chemist. Crystals 7(4):110–150

    Article  Google Scholar 

  6. Rui X, Tan H, Yan Q (2014) Nanostructured metal sulfides for energy storage. Nanoscale 6(17):9889–9924

    Article  CAS  Google Scholar 

  7. Lide DR (1995) CRC handbook of chemistry and physics, 53rd edn. CRC Press, Boca Raton

    Google Scholar 

  8. Alsfasser R, Janiak C, Klapötke TM, Meyer HJ (2012) Moderne Anorganische Chemie, 4th edn. Walter de Gruyter, Berlin

    Google Scholar 

  9. Miller TM, Bederson B (1978) Atomic and molecular polarizabilities - a review of recent advances. Adv Atom Mol Phys 13:1–55

    Article  Google Scholar 

  10. Huang KJ, Zhang JZ, Jia YL, Xing K, Liu YM (2015) Acetylene black incorporated layered copper sulfide nanosheets for high-performance supercapacitor. J Alloy Compd 641:119–126

    Article  CAS  Google Scholar 

  11. Huang KJ, Zhang JZ, Fan Y (2015) One-step solvothermal synthesis of different morphologies CuS nanosheets compared as supercapacitor electrode materials. J Alloy Compd 625:158–163

    Article  CAS  Google Scholar 

  12. Wang G, Zhang M, Lu L, Xu H, Xiao Z, Liu S, Gao S, Yu Z (2018) One-pot synthesis of CuS nanoflower-decorated active carbon layer for high-performance asymmetric supercapacitors. ChemNanoMat 4(9):964–971

    Article  CAS  Google Scholar 

  13. Raj CJ, Kim BC, Cho WJ, Lee WG, Seo Y, Yu KH (2014) Electrochemical capacitor behavior of copper sulfide (CuS) nanoplatelets. J Alloy Compd 586:191–196

    Article  Google Scholar 

  14. Wang Y, Liu F, Ji Y, Yang M, Liu W, Wang W, Sun Q, Zhang Z, Zhao X, Liu X (2015) Controllable synthesis of various kinds of copper sulfides (CuS, Cu7S4, Cu9S5) for high-performance supercapacitors. Dalton Trans 44(22):10431–10437

    Article  CAS  Google Scholar 

  15. Peng H, Ma G, Sun K, Mu J, Wang H, Lei Z (2014) High-performance supercapacitor based on multi-structural CuS@polypyrrole composites prepared by in situ oxidative polymerization. J Mater Chem A 2(10):3303–3307

    Article  CAS  Google Scholar 

  16. Durga IK, Rao SS, Reddy AE, Gopi CV, Kim HJ (2018) Achieving copper sulfide leaf like nanostructure electrode for high performance supercapacitor and quantum-dot sensitized solar cells. Appl Surf Sci 435:666–675

    Article  CAS  Google Scholar 

  17. Mehare RS, Ranganath SP, Chaturvedi V, Badiger MV, Shelke MV (2017) In situ synthesis of nitrogen-and sulfur-enriched hierarchical porous carbon for high-performance supercapacitor. Energy Fuel 32(1):908–915

    Article  Google Scholar 

  18. Li W, Bu Y, Jin H, Wang J, Zhang W, Wang S, Wang J (2013) The preparation of hierarchical flowerlike NiO/reduced graphene oxide composites for high performance supercapacitor applications. Energy Fuel 27(10):6304–6310

    Article  CAS  Google Scholar 

  19. Minakshi M, Meyrick D, Appadoo D (2013) Maricite (NaMn1/3Ni1/3Co1/3PO4)/activated carbon: hybrid capacitor. Energy Fuel 27(6):3516–3522

    Article  CAS  Google Scholar 

  20. Maheswari N, Muralidharan G (2015) Supercapacitor behavior of cerium oxide nanoparticles in neutral aqueous electrolytes. Energy Fuel 29(12):8246–8253

    Article  CAS  Google Scholar 

  21. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44(21):7484–7539

    Article  CAS  Google Scholar 

  22. Tian L, Yuan A (2009) Electrochemical performance of nanostructured spinel LiMn2O4 in different aqueous electrolytes. J Power Sources 192(2):693–697

    Article  CAS  Google Scholar 

  23. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

    Article  CAS  Google Scholar 

  24. Ramesan MT (2013) Synthesis, characterization, and conductivity studies of polypyrrole/copper sulfide nanocomposites. J Appl Polym Sci 128(3):1540–1546

    CAS  Google Scholar 

  25. Shan J, Pulkkinen P, Vainio U, Maijala J, Merta J, Jiang H, Serimaa R, Kauppinen E, Tenhu H (2008) Synthesis and characterization of copper sulfide nanocrystallites with low sintering temperatures. J Mater Chem 18(27):3200–3208

    Article  CAS  Google Scholar 

  26. Podili S, Geetha D, Ramesh PS (2017) One-pot synthesis of CTAB stabilized mesoporous cobalt doped CuS nanoflower with enhanced pseudocapacitive behavior. J Mater Sci-Mater El 28(20):15387–15397

    Article  CAS  Google Scholar 

  27. Du H, Liu D, Wu H, Xia W, Zhang X, Chen Z, Liu Y, Liu H (2016) Surface modification of nickel sulfide nanoparticles: towards stable ultra-dispersed nanocatalysts for residue hydrocracking. Chem Cat Chem 8(8):1543–1550

    CAS  Google Scholar 

  28. Yin PF, Han XY, Zhou C, Xia CH, Hu CL, Sun LL (2015) Large-scale synthesis of nickel sulfide micro/nanorods via a hydrothermal process. Int J Min Met Mater 22(7):762–769

    Article  CAS  Google Scholar 

  29. Pandey G (2012) Synthesis, characterization and optical properties determination of millerite NiS nanorods. Phys E Low Dimens Syst Nanostruct 44(7–8):1657–1661

    Article  CAS  Google Scholar 

  30. Nandhini SM, Muralidharan G (2019) Mesoporous nickel sulphide nanostructures for enhanced supercapacitor performance. Appl Surf Sci 480:186–198

    Article  Google Scholar 

  31. Akinwolemiwa B, Peng C, Chen GZ (2015) Redox electrolytes in supercapacitors. J Electrochem Soc 162(5):A5054–A5059

    Article  CAS  Google Scholar 

  32. Laheäär A, Przygocki P, Abbas Q, Béguin F (2015) Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochem Commun 60:21–25

    Article  Google Scholar 

  33. Nagamuthu S, Vijayakumar S, Muralidharan G (2013) Synthesis of Mn3O4/amorphous carbon nanoparticles as electrode material for high performance supercapacitor applications. Energy Fuel 27(6):3508–3515

    Article  CAS  Google Scholar 

  34. Sudhan N, Subramani K, Karnan M, Ilayaraja N, Sathish M (2016) Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes. Energy Fuel 31(1):977–985

    Article  Google Scholar 

  35. Sankar KV, Kalpana D, Selvan RK (2012) Electrochemical properties of microwave-assisted reflux-synthesized Mn3O4 nanoparticles in different electrolytes for supercapacitor applications. J Appl Electrochem 42(7):463–470

    Article  CAS  Google Scholar 

  36. Ray RS, Sarma B, Jurovitzki AL, Misra M (2015) Fabrication and characterization of titania nanotube/cobalt sulfide supercapacitor electrode in various electrolytes. Chem Eng J 260:671–683

    Article  CAS  Google Scholar 

  37. Chen LM, Lai QY, Hao YJ, Zhao Y, Ji XY (2009) Investigations on capacitive properties of the AC/V2O5 hybrid supercapacitor in various aqueous electrolytes. J Alloy Compd 467(1–2):465–471

    Article  CAS  Google Scholar 

  38. Niu L, Chen L, Zhang J, Jiang P, Liu Z (2018) Revisiting the open-framework zinc hexacyanoferrate: the role of ternary electrolyte and sodium-ion intercalation mechanism. J Power Sources 380:135–141

    Article  CAS  Google Scholar 

  39. Tobishima SI, Arakawa M, Yamaki JI (1988) Electrolytic properties of LiClO4—propylene carbonate mixed with amide-solvents for lithium batteries. Electrochim Acta 33(2):239–244

    Article  CAS  Google Scholar 

  40. Hsu YK, Chen YC, Lin YG (2014) Synthesis of copper sulfide nanowire arrays for high-performance supercapacitors. Electrochim Acta 139:401–407

    Article  CAS  Google Scholar 

  41. Zhang J, Feng H, Yang J, Qin Q, Fan H, Wei C, Zheng W (2015) Solvothermal synthesis of three-dimensional hierarchical CuS microspheres from a cu-based ionic liquid precursor for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces 7(39):21735–21744

    Article  CAS  Google Scholar 

  42. Zhu T, Xia B, Zhou L, Lou XWD (2012) Arrays of ultrafine CuS nanoneedles supported on a CNT backbone for application in supercapacitors. J Mater Chem 22(16):7851–7855

    Article  CAS  Google Scholar 

  43. Xu W, Liang Y, Su Y, Zhu S, Cui Z, Yang X, Inoue A, Wei Q, Liang C (2016) Synthesis and properties of morphology controllable copper sulphide nanosheets for supercapacitor application. Electrochim Acta 211:891–899

    Article  CAS  Google Scholar 

  44. Krishnamoorthy K, Veerasubramani GK, Rao AN, Kim SJ (2014) One-pot hydrothermal synthesis, characterization and electrochemical properties of CuS nanoparticles towards supercapacitor applications. Mater Res Express 1(3):035006

    Article  Google Scholar 

  45. Peng H, Ma G, Mu J, Sun K, Lei Z (2014) Controllable synthesis of CuS with hierarchical structures via a surfactant-free method for high-performance supercapacitors. Mater Lett 122:25–28

    Article  CAS  Google Scholar 

  46. Peng H, Wei C, Wang K, Meng T, Ma G, Lei Z, Gong X (2017) Ni0.85Se@ MoSe2 nanosheet arrays as the electrode for high-performance supercapacitors. ACS Appl Mater Interfaces 9(20):17067–17075

    Article  CAS  Google Scholar 

  47. De B, Balamurugan J, Kim NH, Lee JH (2017) Enhanced electrochemical and photocatalytic performance of core–shell CuS @ carbon quantum dots @ carbon hollow nanospheres. ACS Appl Mater Interfaces 9(3):2459–2468

    Article  CAS  Google Scholar 

  48. Fu W, Han W, Zha H, Mei J, Li Y, Zhang Z, Xie E (2016) Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors. Phys Chem Chem Phys 18(35):24471–24476

    Article  CAS  Google Scholar 

Download references

Funding

One of the authors, S. Nandhini (RGNF-2015-17-SC-TAM-18395), is thankful to the University Grants Commission, New Delhi for providing the financial support through Rajiv Gandhi National Fellowship (RGNF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muralidharan Gopalan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonai Muthu, N., Samikannu, S.D. & Gopalan, M. Influence of thiourea concentration on the CuS nanostructures and identification of the most suited electrolyte for high energy density supercapacitor. Ionics 25, 4409–4423 (2019). https://doi.org/10.1007/s11581-019-03002-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03002-8

Keywords

Navigation