Skip to main content
Log in

Structural, vibrational spectroscopic, and electrical conduction mechanisms of α-NaCoPO4 compound

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The orthophosphate α-NaCoPO4 compound was prepared from highly pure constituents with mechanical milling followed by heat treatment. X-ray diffraction data refined via Rietveld method revealed that this compound crystallizes in the orthorhombic system with Pnma space group. A thermal analysis shows that this composition undergoes one-phase transitions at T = 567 K. The infrared and Raman spectra confirm the presence of PO43− tetrahedral. The evolution of half-width Δν and intensity report versus temperature introduces huge changes associated with the phase transition originating from the reorientation of the PO4 tetrahedra. Besides, the electrical data analysis of the impedance spectra is adapted to an equivalent circuit. Furthermore, the alternating current (AC) conductivity of grain contribution is interpreted using the Jonscher’s universal power law. The AC conductivity behavior is ensured by a single process defined as a hopping transport mechanism. The conductivity frequency dependence is interpreted using the non-overlapping small polaron tunneling model (NSPT) in the two phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sawada A, Azumi T, Kuroiwa Y (2000) X-ray study of extremely slow transition in CsZnPO4 crystal. Ferroelecrics 237:245–252

    Article  Google Scholar 

  2. Yahia HB, Gaudin E, Darriet J (2007) Structure and magnetic properties of the new phosphate RbMnPO4. J Alloys Compd 442:74–76

    Article  CAS  Google Scholar 

  3. Minakshi M, Singh P, Appadoo D, Martin DE (2011) Synthesis and characterization of olivine LiNiPO4 for aqueous rechargeable battery. Electrochim Acta 56:4356–4360

    Article  CAS  Google Scholar 

  4. Navarro M, Ginebra MP, Clement J, Martinez S, Avila G, Planell JA (2003) Physicochemical degradation of titania-stabilized soluble phosphate glasses for medical applications. J Am Ceram Soc 86:1345–1352

    Article  CAS  Google Scholar 

  5. Daidouh A, Veiga ML, Pico C, Martinez – Ripoll M (1997) A new polymorph of Li4P2O7. Acta Crystallogr C53:167–169

    CAS  Google Scholar 

  6. Fisher P, Luján M, Kubel F, Schmid H (1994) Crystal structure and magnetic ordering in magnetoelectric KNiPO4 investigated by means of X-ray and neutron diffraction. Ferroelectrics 162:37–44

    Article  Google Scholar 

  7. Wallez G, Colbeau-Justin C, Mercier T, Quarton M, Robert F (1998) Crystal chemistry and polymorphism of potassium–magnesium monophosphate. J Solid State Chem 136:175–180

    Article  CAS  Google Scholar 

  8. Wallez G, Lucas F, Souron JP, Quarton M (1999) Potassium –zinc monophosphate : an original polymorphic tridymite derivate. Mater Res Bull 34:1251–1261

    Article  CAS  Google Scholar 

  9. Moreau P, Guyomard B, Gaubicher J, Boucher F (2010) Structure and stability of sodium intercalated phases in olivine FePO4. Chem Mater 22:4126–4128

    Article  CAS  Google Scholar 

  10. Minakshi M, Meyrick D (2013) Reversible sodiation in maricite NaMn1/3Co1/3Ni1/3PO4 for renewable energy storage. J Alloys Compd 555:10–15

    Article  CAS  Google Scholar 

  11. Lee KT, Ramesh TN, Nan F, Botton G, Nazar LF (2011) Topochemical synthesis of sodium metal phosphate olivines for sodium–ion batteries. Chem Mater 23:3593–3600

    Article  CAS  Google Scholar 

  12. Oh SM, Myung ST, Hassoun J, Scrosati B, Sun YK (2012) Reversible NaFePO4 electrode for sodium secondary batteries. Electrochem Commun 22:149–152

    Article  CAS  Google Scholar 

  13. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  14. Pan H, Hu YS, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360

    Article  CAS  Google Scholar 

  15. Zhu Y, Xu Y, Luo C, Wang C (2013) Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5:780–787

    Article  CAS  PubMed  Google Scholar 

  16. Hammond R, Barbier J (1996) Structural chemistry of NaCoPO4. Acta Crystallogr B52:440–449

    Article  Google Scholar 

  17. Rietveld HM (1965) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  18. Sanz F, Parada C, Amador U, Monge MA, Valero CR (1996) Na4Co3(PO4)2P2O7 , a new sodium cobalt phosphate containing a three-dimensional system of large intersecting tunnels. J Solid State Chem 123:129–139

    Article  CAS  Google Scholar 

  19. Kumari R, Ahlawat N, Agarwal A, Sanghi S, Sindhu M (2017) Structural transformation and investigation of dielectric properties of Ca substituted (Na0.5Bi0.5) 0.95− xBa0. 05CaxTiO3 ceramics. J Alloys Compd 695:3282–3289

    Article  CAS  Google Scholar 

  20. Das S, Dey TK (2007) Structural and magnetocaloric properties of La1−yNayMnO3 compounds prepared by microwave processing. J Phys D Appl Phys 40:1855–1863

    Article  CAS  Google Scholar 

  21. Hannachi N, Bulou A, Chassenieux C, Guidara K, Hlel F (2011) Temperature study of [N(C3H7)4]2Cd2Cl6 by thermal analysis, Raman scattering, and X-ray powder diffraction: evidence of phase transitions. Phys A 390:2987–2994

    Article  CAS  Google Scholar 

  22. Kchaou H, Ben Rhaiem A, Karoui K, Jomni F, Guidara K (2016) Electrical properties and phase transition of [(CH3)3NH]CdCl3 compound. Applied Phys A 122:82–92

    Article  CAS  Google Scholar 

  23. Rokita M, Handke M, Mozgawa W (2000) The AIPO4 polymorphs structure in the light of Raman and IR spectroscopy studies. J Mol Struct 555:351–356

    Article  CAS  Google Scholar 

  24. Enneffati M, Maaloul NK, Louati B, Guidara K, Khirouni K (2017) Synthesis, vibrational and UV–visible studies of sodium cadmium orthophosphate. Opt Quant Electron 49:331

    Article  CAS  Google Scholar 

  25. Bushiri MJ, Jayasree RS, Fakhfakh M, Nayar VU (2002) Raman and infrared spectral analysis of thallium niobyl phosphates: Tl2NbO2PO4, Tl3NaNb4O9 (PO4)2 and TlNbOP2O7. J Mater Chem Phys 73:179–185

    Article  CAS  Google Scholar 

  26. Membreno N, Xiao P, Park KS, Goodenough JB, Henkelman G, Stevenson KJ (2013) In situ Raman study of phase stability of α-Li3V2(PO4)3 upon thermal and laser heating. J Phys Chem C 117:11994–12002

    Article  CAS  Google Scholar 

  27. Burba CM, Frech R (2006) Vibrational spectroscopic study of lithium intercalation into LiTi2 (PO4)3. J Solid State Ionics 177:1489–1494

    Article  CAS  Google Scholar 

  28. Lujan M, Schmid H, Tissot P (1997) Phase transitions in ferroic crystals of KMPO4(M=Fe2+,1 Co2+, Ni2+) studied by ODSC. J Therm Anal 48:597–610

    Article  CAS  Google Scholar 

  29. Orilukas A, Dindune A, Kanepe Z (2003) Synthesis, structure and peculiarities of ionic transport of Li1.6Mg0.3Ti1.7 (PO4)3 ceramics. Solid State Ionics 157:177–181

    Article  CAS  Google Scholar 

  30. Pradhan DK, Choudhary RNP, Rinaldi C, Katiyar RS (2009) Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3. J Appl Phys 106:024102–024112

    Article  CAS  Google Scholar 

  31. Ajili O, Louati B, Guidara K (2015) Conductivity and dielectric studies on K2SrP2O7 compound. Appl Phys A Mater Sci Process 119:1119–1125

    Article  CAS  Google Scholar 

  32. Nagata T, Shimura T, Ashida A, Fujimura N, Ito T (2002) Electro-optic property of ZnO: X (X = Li, Mg) thin films. J Cryst Growth 237–239:533–537

    Article  Google Scholar 

  33. Louati B, Gargouri M, Guidara K, Mhiri T (2005) AC electrical properties of the mixed crystal (NH4)3H(SO4)1.42(SeO4)0.58. J Phys Chem Solids 66:762–765

    Article  CAS  Google Scholar 

  34. Ben Bechir M, Karoui K, Tabellout M, Guidara K, Ben Rhaiem A (2014) Electrical properties and phase transition of [(CH3)3NH]CdCl3 compound. J Alloys Compd 588:551–557

    Article  CAS  Google Scholar 

  35. Elliot SR (1987) Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36:135–217

    Article  Google Scholar 

  36. Punia R, Kundu RS, Dult M, Murugavel S, Kishore N (2012) Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system. J Appl Phys 112:083701–083705

    Article  CAS  Google Scholar 

  37. Austin IG, Mott NF (1969) Polarons in crystalline and non-crystalline materials. Adv Phys 18:41–102

    Article  CAS  Google Scholar 

  38. Dult M, Kundu RS, Murugavel S, Punia R, Kishore N (2014) Conduction mechanism in bismuth silicate glasses containing titanium. Phys B 452:102–107

    Article  CAS  Google Scholar 

  39. Long AR (1982) Frequency-dependent loss in amorphous semiconductors. Adv Phys 31:553–637

    Article  CAS  Google Scholar 

  40. Gudmundsson JT, Svavarsson HG, Gudjonsson S, Gislason HP (2003) Frequency-dependent conductivity in lithium-diffused and annealed GaAs. Phys B Phys Condens Matter 340:324–328

    Article  CAS  Google Scholar 

  41. Kahouli A, Sylvestre A, Jomni F, Yangui B, Legrand J (2012) Experimental and theoretical study of AC electrical conduction mechanisms of semicrystalline parylene C thin films. Phys Chem A 116:1051–1058

    Article  CAS  Google Scholar 

  42. Bekheet AE, Hegab NA (2009) Ac conductivity and dielectric properties of Ge20Se75In5 films. Vacuum 83:391

    Article  CAS  Google Scholar 

  43. Rhaiem AB, Megdich M, Guidara K (2013) Complex impedance analysis and ionic conductivity studies of NaBaPO4. Ionics 19:1381–1386

    Article  CAS  Google Scholar 

  44. Chakchouk N, Louati B, Guidara K (2018) Mater Res Bull 99:52–60

    Article  CAS  Google Scholar 

  45. Senthilkumar B, Sankar KV, Vasylechko L, Lee YS, Selvan RK (2014) Synthesis and electrochemical performances of maricite-NaMPO4 (M =Ni, Co, Mn) electrodes for hybrid supercapacitors. RSC Adv 4:53192–53200

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ben Rhaiem.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajmi, A., Chemingui, M., Mahmoud, A. et al. Structural, vibrational spectroscopic, and electrical conduction mechanisms of α-NaCoPO4 compound. Ionics 25, 1091–1103 (2019). https://doi.org/10.1007/s11581-019-02851-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02851-7

Keywords

Navigation