Skip to main content
Log in

Effect of ionic substitutions on the physicochemical, morphological, and electrochemical properties of lithium-rich vanadium phosphate and pyrophosphate compounds

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The new Na/Cr-bisubstituted lithium vanadium monodiphosphate compound (LNVCPP) Li9-xNaxV2.8Cr0.2(P2O7)3(PO4)2, where x = 0.0, 0.5, 1.0, 1.5, and 2.0 have been prepared via simple sol–gel combustion route. The as-prepared materials are characterized by XRD, FESEM, and EDX. The XRD data indicate the presence of single phase of Li9-xNaxV2.8Cr0.2 (P2O7)3(PO4)2 (x = 0.0–2.0) with trigonal structure. Both cycle performance and rate capability have shown improvement with moderate Na-doping content. Cell of Li8.5Na0.5V2.8Cr0.2(P2O7)3(PO4)2 cathode delivers a specific discharge capacity of 53 mAhg−1 after 35 cycles in comparison with the other samples. The optimum ratio Li8.5Na0.5VCPP coated with carbon delivers a specific discharge capacity of about 75 mAhg−1 after 25 cycles. Therefore, it presents the good electrochemical rate and cyclic stability. The enhancement of the rate and cyclic capability may be attributed to the optimizing particle size, morphologies, and structural stability with the proper amount of Na-doping (x = 0.5) in Li sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Salunkhe RR, Tang J, Kobayashi N, Kim J, Ide Y, Tominaka S, Kim JH, Yamauchi Y (2016) Ultrahigh performance supercapacitors utilizing core–shell nanoarchitectures from a metal–organic framework-derived nanoporous carbon and a conducting polymer. Chem Sci 7(9):5704–5713. https://doi.org/10.1039/C6SC01429A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Salunkhe RR, Lee Y-h, Chang K-h, Li J-m, Simon P, Tang J, Torad NL, Hu C-C, Yamauchi Y (2014) Nanoarchitectured Graphene-Based Supercapacitors for Next-Generation Energy-Storage Applications. Chem Eur J 20(43):13838–13852. https://doi.org/10.1002/chem.201403649

    Article  CAS  PubMed  Google Scholar 

  3. Tang J, Yamauchi Y (2016) MOF morphologies in control. Nat Chem 8(7):638–639. https://doi.org/10.1038/nchem.2548

    Article  CAS  PubMed  Google Scholar 

  4. Salunkhe RR, Kaneti YV, Yamauchi Y (2017) Metal–Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. ACS Nano 11(6):5293–5308. https://doi.org/10.1021/acsnano.7b02796

    Article  CAS  PubMed  Google Scholar 

  5. Young C, Wang J, Kim J, Sugahara Y, Henzie J, Yamauchi Y (2018) Controlled Chemical Vapor Deposition for Synthesis of Nanowire Arrays of Metal–Organic Frameworks and Their Thermal Conversion to Carbon/Metal Oxide Hybrid Materials. Chem Mater 30(10):3379–3386. https://doi.org/10.1021/acs.chemmater.8b00836

    Article  CAS  Google Scholar 

  6. Salunkhe RR, Young C, Tang J, Takei T, Ide Y, Kobayashi N, Yamauchi Y (2016) A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem Commun 52(26):4764–4767. https://doi.org/10.1039/C6CC00413J

    Article  CAS  Google Scholar 

  7. Choi N-S, Chen Z, Freunberger SA, Ji X, Sun Y-K, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angew Chem Int Ed 51(40):9994–10024. https://doi.org/10.1002/anie.201201429

    Article  CAS  Google Scholar 

  8. Zheng J-c, Yang Z, Wang P-b, Tang L-b, An C-s, He Z-j (2018) Multiple Linkage Modification of Lithium-Rich Layered Oxide Li1.2 Mn0.54Ni0.13Co0.13O2 for Lithium Ion Battery. ACS Appl Mater Interfaces 10(37):31324–31329. https://doi.org/10.1021/acsami.8b09256

    Article  CAS  PubMed  Google Scholar 

  9. Zheng J-c, Han Y-d, Sun D, Zhang B, Cairns EJ (2017) In situ-formed LiVOPO4@V2O5 core-shell nanospheres as a cathode material for lithium-ion cells. Energy Storage Mater 7:48–55. https://doi.org/10.1016/j.ensm.2016.12.003

    Article  Google Scholar 

  10. Zheng J-c, Yang Z, He Z-j, Tong H, Yu W-j, Zhang J-f (2018) In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries. Nano Energy 53:613–621. https://doi.org/10.1016/j.nanoen.2018.09.014

    Article  CAS  Google Scholar 

  11. Zheng J-c, Yang B, Wang X, Zhang B, Tong H, Yu W, Zhang J (2018) Comparative Investigation of Na2FeP2O7 Sodium Insertion Material Synthesized by Using Different Sodium Sources. ACS Sustain Chem Eng 6(4):4966–4972. https://doi.org/10.1021/acssuschemeng.7b04516

    Article  CAS  Google Scholar 

  12. Masquelier C, Croguennec L (2013) Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries. Chem Rev 113(8):6552–6591. https://doi.org/10.1021/cr3001862

    Article  CAS  PubMed  Google Scholar 

  13. Kim MG, Cho J (2009) Reversible and High-Capacity Nanostructured Electrode Materials for Li-Ion Batteries. Adv Funct Mater 19(10):1497–1514. https://doi.org/10.1002/adfm.200801095

    Article  CAS  Google Scholar 

  14. Fu L, Liu H, Li C, Wu Y, Rahm E, Holze R, Wu H (2005) Electrode materials for lithium secondary batteries prepared by sol–gel methods. Prog Mater Sci 50(7):881–928. https://doi.org/10.1016/j.pmatsci.2005.04.002

    Article  CAS  Google Scholar 

  15. Padhi AK (1997) Mapping of Transition Metal Redox Energies in Phosphates with NASICON Structure by Lithium Intercalation. J Electrochem Soc 144(8):2581–2581. https://doi.org/10.1149/1.1837868

    Article  CAS  Google Scholar 

  16. Yin SC, Grondey H, Strobel P, Anne M, Nazar LF (2003) Electrochemical Property: Structure Relationships in Monoclinic Li 3-yV2(PO4)3. J Am Chem Soc 125(34):10402–10411. https://doi.org/10.1021/ja034565h

    Article  CAS  PubMed  Google Scholar 

  17. Whittingham MS, Song Y, Lutta S, Zavalij PY, Chernova NA (2005) Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries. J Mater Chem 15(33):3362–3362. https://doi.org/10.1039/b501961c

    Article  CAS  Google Scholar 

  18. Hautier G, Jain A, Mueller T, Moore C, Ong SP, Ceder G (2013) Designing Multielectron Lithium-Ion Phosphate Cathodes by Mixing Transition Metals. Chem Mater 25(10):2064–2074. https://doi.org/10.1021/cm400199j

    Article  CAS  Google Scholar 

  19. Rui X, Yan Q, Skyllas-Kazacos M, Lim TM (2014) Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review. J Power Sources 258:19–38. https://doi.org/10.1016/j.jpowsour.2014.01.126

    Article  CAS  Google Scholar 

  20. Balasubramanian P, Mancini M, Axmann P, Wohlfahrt-Mehrens M (2017) Facile Synthesis and Electrochemical Investigation of Li9V3(P2O7)3(PO4)2 as High Voltage Cathode for Li-Ion Batteries. J Electrochem Soc 164(1):A6047–A6053. https://doi.org/10.1149/2.0071701jes

    Article  CAS  Google Scholar 

  21. Kuang Q, Xu J, Zhao Y, Chen X, Chen L (2011) Layered monodiphosphate Li9V3(P2O 7)3(PO4)2: A novel cathode material for lithium-ion batteries. Electrochim Acta 56(5):2201–2205. https://doi.org/10.1016/j.electacta.2010.11.051

    Article  CAS  Google Scholar 

  22. Kuang Q, Zhao Y, Xu J (2011) Synthesis, Structure, Electronic, Ionic, and Magnetic Properties of Li9V3(P2O7)3(PO4)2 Cathode Material for Li-Ion Batteries. J Phys Chem C 115(16):8422–8429. https://doi.org/10.1021/jp200961b

    Article  CAS  Google Scholar 

  23. Liang Z, Zhao Y (2013) Preparation and electrochemical study of Mn-doped Li9V3(P2O7)3(PO4)2 cathode material for lithium ion batteries. Electrochim Acta 94:374–380. https://doi.org/10.1016/j.electacta.2012.12.054

    Article  CAS  Google Scholar 

  24. Xu J, Zhao Y, Kuang Q, Dong Y (2011) Preparation and electrochemical properties of Cr-doped Li9V3(P2O7)3(PO4)2 as cathode materials for lithium-ion batteries. Electrochim Acta 56(18):6562–6567. https://doi.org/10.1016/j.electacta.2011.02.093

    Article  CAS  Google Scholar 

  25. Kalaiselvi N, Doh C-H, Park C-W, Moon S-I, Yun M-S (2004) A novel approach to exploit LiFePO4 compound as an ambient temperature high capacity anode material for rechargeable lithium batteries. Electrochem Commun 6(11):1110–1113. https://doi.org/10.1016/j.elecom.2004.08.014

    Article  CAS  Google Scholar 

  26. Rui XH, Yesibolati N, Chen CH (2011) Li3V2(PO4)3/C composite as an intercalation-type anode material for lithium-ion batteries. J Power Sources 196(4):2279–2282. https://doi.org/10.1016/j.jpowsour.2010.09.024

    Article  CAS  Google Scholar 

  27. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  28. Atef Y, Shenouda HKL (2008) Electrochemical behavior of tin borophosphate anode electrodes for energy storage systems. J Power Sources 185:1386–1391

    Article  CAS  Google Scholar 

  29. Kuang Q, Zhao Y, Dong Y, Fan Q, Lin X, Liu X (2016) A comparative study of Li8NaV3(P2O7)3(PO4)2 and Li9V3(P2O7)3(PO4)2: Synthesis, structure and electrochemical properties. J Power Sources 306:337–346. https://doi.org/10.1016/j.jpowsour.2015.12.011

    Article  CAS  Google Scholar 

  30. Shenouda AY, Liu HK (2009) Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode. J Alloys Compd 477(1-2):498–503. https://doi.org/10.1016/j.jallcom.2008.10.077

    Article  CAS  Google Scholar 

  31. Shenouda AY, Liu HK (2010) Preparation, Characterization, and Electrochemical Performance of Li2CuSnO4 and Li2CuSnSiO6 Electrodes for Lithium Batteries. J Electrochem Soc 157(11):A1183–A1183. https://doi.org/10.1149/1.3479425

    Article  CAS  Google Scholar 

  32. Satish R, Aravindan V, Ling WC, Madhavi S (2015) Carbon-coated Li3V2(PO4)3 as insertion type electrode for lithium-ion hybrid electrochemical capacitors: An evaluation of anode and cathodic performance. J Power Sources 281:310–317. https://doi.org/10.1016/j.jpowsour.2015.01.190

    Article  CAS  Google Scholar 

  33. Shenouda AY (2006) Structure and electrochemical behavior of lithium vanadate materials for lithium batteries. Electrochim Acta 51(26):5973–5981. https://doi.org/10.1016/j.electacta.2006.03.080

    Article  CAS  Google Scholar 

Download references

Funding

The authors in CMRDI would like to thank the Academy of Scientific Research and Technology in Egypt for the funding of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. S. Sanad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Aziz, A., Shenouda, A.Y., Sanad, M.M.S. et al. Effect of ionic substitutions on the physicochemical, morphological, and electrochemical properties of lithium-rich vanadium phosphate and pyrophosphate compounds. Ionics 25, 969–980 (2019). https://doi.org/10.1007/s11581-019-02843-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02843-7

Keywords

Navigation