Skip to main content

Advertisement

Log in

Cation influence of new imidazolium-based ionic liquids on hydrogen production from water electrolysis

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Aqueous solutions of three new imidazolium-based ionic liquids, imidazolium hydrogenosulfate, methylimidazolium hydrogenosulfate, and butylimidazolium hydrogenosulfate, have been tested as electrolytes in the hydrogen evolution reaction (HER) by water electrolysis. Tafel analyses have been conducted on each system and reveal that the mechanism of HER in Pt cathode is Volmer–Tafel, where the determining step is the hydrogen desorption at the catalytic surface. The electrolytic solutions have a lower pH value and higher ionic conductivity when the size of the substituent in the imidazole ring increases. Likewise, the activation energy of HER decreases and the exchange current increases with increasing size of the substituent in the imidazole ring of the ionic liquid used in the electrolytic solution. Therefore, the experimental results indicated that butylimidazolium hydrogenosulfate ionic liquid is the most effective, among those tested, as an aqueous electrolyte for HER. The determination of the potential of zero charge of the three electrolytes indicates that the specific adsorption is favored by the increase of the molar mass of the cation, however without the blocking the active sites of the Pt cathode. The adsorbed cations provide an alternative mechanism to the Tafel step with a lower activation energy for the HER, thus characterizing the catalytic process of this reaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bidin N, Azni SR, Bakar AAM, Johari AR, Munap DHFA, Salebi FM, Razak SNS, Sulaiman SNA (2017) The effect of sunlight in hydrogen production from water electrolysis. Int J Hidrogen Energy 42:133–142. https://doi.org/10.1016/j.ijhydene.2016.11.203

    Article  CAS  Google Scholar 

  2. Suleman F, Dincer I, Agelin-Chaab M (2015) Environmental impact assessment and comparison of some hydrogen production options. Int J Hidrogen Energy 40:6976–6987. https://doi.org/10.1016/j.ijhydene.2015.03.123

    Article  CAS  Google Scholar 

  3. Uchidaa T, Sasaki Y, Ikeshoji T, Osawa M (2017) 4, 4′-Bipyridine as a molecular catalyst for electrochemical hydrogen production. Electrochim Acta 248:585–592. https://doi.org/10.1016/j.electacta.2017.07.101

    Article  CAS  Google Scholar 

  4. Orfila M, Linares M, Molina R, Botas JA, Marugan J, Sanz R (2017) Thermochemical hydrogen production using manganese cobalt spinels as redox. Int J Hidrogen Energy 42:13532–13543. https://doi.org/10.1016/j.ijhydene.2017.02.027

    Article  CAS  Google Scholar 

  5. Reverberi AP, Kleme JJ, Varbanov PS, Fabiano B (2016) A review on hydrogen production from hydrogen sulphide by chemical and photochemical methods. J Clean Prod 136:72–80. https://doi.org/10.1016/j.jclepro.2016.04.139

    Article  CAS  Google Scholar 

  6. Chang CJ, Wei YH, Huang KP (2017) Photocatalytic hydrogen production by flower-like graphene supported ZnS composite photocatalysts. Int J Hidrogen Energy 42:23578–23586. https://doi.org/10.1016/j.ijhydene.2017.04.219

    Article  CAS  Google Scholar 

  7. Saadetnejad D, Yıldırım R (2018) Photocatalytic hydrogen production by water splitting over au/Al-SrTiO3. Int J Hidrogen Energy 43:1116–1122. https://doi.org/10.1016/j.ijhydene.2017.10.154

    Article  CAS  Google Scholar 

  8. Chakik FE, Kaddami M, Mikou M (2017) Effect of operating parameters on hydrogen production by electrolysis of water. Int J Hidrogen Energy 42:25550–25557. https://doi.org/10.1016/j.ijhydene.2017.07.015

    Article  CAS  Google Scholar 

  9. Vincent I, Bessarabov D (2018) Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew Sust Energ Rev 81:1690–1704. https://doi.org/10.1016/j.rser.2017.05.258

    Article  CAS  Google Scholar 

  10. Ganley JC (2009) High temperature and pressure alkaline electrolysis. Int J Hydrog Energy 34:3604–3611. https://doi.org/10.1016/j.ijhydene.2009.02.083

    Article  CAS  Google Scholar 

  11. Gouérec P, Poletto L, Denizot J, Sanchez-Cortezon E, Miners JH (2004) The evolution of the performance of alkaline fuel cells with circulating electrolyte. J Power Sources 129:193–204. https://doi.org/10.1016/j.jpowsour.2003.11.032

    Article  CAS  Google Scholar 

  12. Schulze M, Gülzow E (2004) Degradation of nickel anodes in alkaline fuel cells. J Power Sources 127:252–263. https://doi.org/10.1016/j.jpowsour.2003.09.021

    Article  CAS  Google Scholar 

  13. Gülzow E (1996) Alkaline fuel cells: a critical view. J Power Sources 61:99–104. https://doi.org/10.1016/S0378-7753(96)02344-0

    Article  Google Scholar 

  14. Gülzow E, Schulze M (2004) Long-term operation of AFC electrodes with CO2 containing gases. J Power Sources 127:243–251. https://doi.org/10.1016/j.jpowsour.2003.09.020

    Article  CAS  Google Scholar 

  15. Wang J, Xu F, Jin H, Chen Y, Wang Y (2017) Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv Mater 29:1605838. https://doi.org/10.1002/adma.201605838

    Article  CAS  Google Scholar 

  16. Li T, Wang X, Yuan W, Li CM (2016) Unique co-catalytic behavior of Protic ionic liquids as multifunctional electrolytes for water splitting. ChemElectroChem 3:204–208. https://doi.org/10.1002/celc.201500458

    Article  CAS  Google Scholar 

  17. Armand N, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629. https://doi.org/10.1038/nmat2448

    Article  CAS  PubMed  Google Scholar 

  18. Zhu Y, Hosmane NS (2017) Ionic liquids: recent advances and applications in boron chemistry. Eur J Inorg Chem 38:4369–4377. https://doi.org/10.1002/ejic.201700553

    Article  CAS  Google Scholar 

  19. Amaral L, Cardoso DSP, Šljukić B, Santos DMF, Sequeira CAC (2017) Room temperature ionic liquids as electrolyte additives for the HER in alkaline media. J Electrochem Soc 164:427–432 http://jes.ecsdl.org/content/164/4/F427

    Article  CAS  Google Scholar 

  20. Amaral L, Cardoso DSP, Šljukić B, Santos DMF, Sequeira CAC (2018) Electrochemistry of hydrogen evolution in RTILs aqueous mixtures. Mater Res Bull in press. https://doi.org/10.1016/j.materresbull.2018.04.041

  21. Fiegenbaum F, Martini EMA, Souza MO, Becker MR, Souza RF (2013) Hydrogen production by water electrolysis using tetra-alkyl-ammonium-sulfonic acid ionic liquid electrolytes. J Power Sources 243:822–825. https://doi.org/10.1016/j.jpowsour.2013.06.077

    Article  CAS  Google Scholar 

  22. Shirini F, Khaligh NG, Akbari-Dadamahaleh S (2012) Preparation, characterization and use of 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient, halogen-free and reusable ionic liquid catalyst for the trimethylsilyl protection of hydroxyl groups and protection of the obtained trimethylsilanes. J Mol Catal A Chem 365:15–23. https://doi.org/10.1016/j.molcata.2012.08.002

    Article  CAS  Google Scholar 

  23. Chaker Y, Ilikti H, Debdab M, Moumene T, Belarbi E, Wadouachi A, Abbas O, Khelifa B, Bresson S (2016) Synthesis and characterization of 1-(hydroxyethyl)-3-methylimidazolium sulfate and chloride ionic liquids. J Mol Struct 1113:182–190. https://doi.org/10.1016/j.molstruc.2016.02.017

    Article  CAS  Google Scholar 

  24. Zeng Q, Zhang J, Cheng H, Chen L, Qi Z (2017) Corrosion properties of steel in 1-butyl-3-methylimidazolium hydrogen sulfate ionic liquid systems for desulfurization application. RSC Adv 7:48526–48536. https://doi.org/10.1039/c7ra09137k

    Article  CAS  Google Scholar 

  25. Ramasamy R (2015) Vibrational spectroscopic studies of imidazole. Armen J Phys 8:51–55

    CAS  Google Scholar 

  26. Skoog AD, West DM, Holler FJ, Crouch SR (2006) Fundamentos de Química Analítica. Thomson, São Paulo

    Google Scholar 

  27. Greaves TL, Drummond CJ (2015) Protic ionic liquids: evolving structure–property relationships and expanding applications. Chem Rev 115:11379–11448. https://doi.org/10.1021/cr068040u

    Article  CAS  PubMed  Google Scholar 

  28. Fiegenbaum F, Souza MO, Becker MR, Martini EMA, Souza RF (2015) Electrocatalytic activities of cathode electrodes for water electrolysis using tetra-alkyl-ammonium-sulfonic acid ionic liquid as electrolyte. J Power Sources 280:12–17. https://doi.org/10.1016/j.jpowsour.2015.01.082

    Article  CAS  Google Scholar 

  29. Zhang L, Zhang Y, Zhang X, Li Z, Shen G, Ye M, Fan C, Fang H, Hu J (2006) Electrochemically controlled formation and growth of hydrogen nanobubbles. Langmuir 22:8109–8113. https://doi.org/10.1021/la060859f

    Article  CAS  PubMed  Google Scholar 

  30. Lima DW, Fiegenbaum F, Trombetta F, Souza MO, Martini EMA (2018) Influence of graphitic materials microstructure in the hydrogen evolution in aqueous solution of tetra-alkylammonium-sulfonic acid ionic liquid. Int J Hydrog Energy 43:1239–1250. https://doi.org/10.1016/j.ijhydene.2017.11.097

    Article  CAS  Google Scholar 

  31. Lima DW, Fiegenbaum F, Trombetta F, Souza MO, Martini EMA (2017) PtNi and PtMo nanoparticles as efficient catalysts using TEA-PS.BF4 ionic liquid as electrolyte towards HER. Int J Hydrog Energy 42:5676–5683. https://doi.org/10.1016/j.ijhydene.2016.11.166

    Article  CAS  Google Scholar 

  32. Zhou W, Jia J, Lu J, Yang L, Hou D, Li G, Chen S (2016) Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 28:29–43. https://doi.org/10.1016/j.nanoen.2016.08.027

    Article  CAS  Google Scholar 

  33. Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 5:1–21. https://doi.org/10.1038/srep13801

    Article  Google Scholar 

  34. Azizi O, Jafarian M, Gobal F, Heli H, Mahjani MG (2007) The investigation of the kinetics and mechanism of hydrogen evolution reaction on tin. Int J Hydrog Energy 32:1755–1761. https://doi.org/10.1016/j.ijhydene.2006.08.043

    Article  CAS  Google Scholar 

  35. Vetter KJ (1967) Electrochemical kinetics—theoretical and experimental aspects. Academic Press, London

    Google Scholar 

  36. Bard AJ, Faulkner LR (1980) Electrochemical methods—fundamentals and applications. John Wiley, New York

    Google Scholar 

  37. Greef R, Peat R, Peter LM, Pletcher D, Robinson J (1985) Instrumental methods in electrochemistry. Ellis Horwood, Chichester

    Google Scholar 

  38. Ticianelli EA, Gonzalez ER (2013) Eletroquímica. Edusp, São Paulo

    Google Scholar 

  39. Padilha JC, Martini EMA, Brum C, Souza MO, Souza RF (2009) Study of molybdenum electrodes for hydrogen evolution reaction. J Power Sources 194:482–485. https://doi.org/10.1016/j.jpowsour.2009.04.018

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Letícia Zanchet or Emilse Maria Agostini Martini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanchet, L., da Trindade, L.G., Lima, D.W. et al. Cation influence of new imidazolium-based ionic liquids on hydrogen production from water electrolysis. Ionics 25, 1167–1176 (2019). https://doi.org/10.1007/s11581-018-2803-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2803-0

Keywords

Navigation