Skip to main content
Log in

Hydrothermal synthesis and electrochemical properties of ZnCo2O4 microspheres

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Zinc cobalt oxide (ZnCo2O4) microspheres are prepared at three different hydrothermal process temperatures (100 °C, 130 °C, and 160 °C) assisted with urea. XRD studies reveal the spinel face-centered cubic (Fd3m) structure of ZnCo2O4 microspheres. The optical and vibrational properties of the product are characterized by photoluminescence and FTIR studies. The strong near-band edge emission peak observed at 392 nm corresponds to the direct recombination of the exciton-exciton collision process for all three synthesized products; SEM analysis reveals the complete growth stage of spherical ZnCo2O4 microspheres at three different temperatures. The electrochemical properties of synthesized ZnCo2O4 microspheres are analyzed by cyclic voltammetry, electroimpedance spectroscopy, and galvanostatic charging and discharging studies. ZnCo2O4 microspheres (SH3–160 °C) exhibit the superior specific capacitance of 500 F/g at 0.75 A/g current density and retain their specific capacitance of 80% at current density 2 A/g. ZnCo2O4 microspheres (SH3–160 °C) may be considered as a good candidate as electrode in supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Dubal DP, Holze R (2013) Self-assembly of stacked layers of Mn3O4 nanosheets using a scalable chemical strategy for enhanced, flexible electrochemical energy storage. J Power Sources 238:274–282

    Article  CAS  Google Scholar 

  2. Gund GS, Dubal DP, Patil BH, Shinde SS, Lokhande CD (2013) Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. Electrochim Acta 92:205–215

    Article  CAS  Google Scholar 

  3. Xue DF, Chen KF (2015) Searching for electrode materials with high electrochemical reactivity. J Mater 1:170–187

    Google Scholar 

  4. Dubal DP, Romero PG, Sankapal BR, Holze R (2015) Nickel cobaltite as an emerging material for supercapacitors: an overview. Nano Energy 11:377–399

    Article  CAS  Google Scholar 

  5. Wu Z, Zhu Y, Ji X (2014) NiCo2O4-based materials for electrochemical supercapacitors. J Mater Chem A 2:14759–14772

    Article  CAS  Google Scholar 

  6. Pan L, Li L, Chen Y (2013) Synthesis of hexagonal Co3O4 and ag/Co3O4 composite nanosheets and their electrocatalytic performances. J Clust Sci 24:1001–1010

    Article  CAS  Google Scholar 

  7. Pan Y, Gao H, Zhang M, Li L, Wang Z (2017) Facile synthesis of ZnCo2O4 micro-flowers and micro-sheets on Ni foam for pseudocapacitor electrodes. J Alloys Compd 702:381–387

    Article  CAS  Google Scholar 

  8. Hou X, Bai S, Xue S, Shang X, He D (2017) Wrinkled-paper-like ZnCo2O4 nanoflakes as a superior anode material for ultrahigh-rate lithium-ion batteries. J Alloys Compd 711:592–597

    Article  CAS  Google Scholar 

  9. Rajeshkhanna G, Umeshbabu E, Justin P, Ranga Rao G (2017) Spinel ZnCo2O 4 nanosheets as carbon and binder free electrode material for energy storage and electro reduction of H2O2. J Alloys Compd 696:947–955

    Article  CAS  Google Scholar 

  10. Song X, Ru Q, Zhang B, Hu S, An B (2014) Flake-by-flake ZnCo2O4 as a high capacity anode material for lithium-ion battery. J Alloys Compd 585:518–522

    Article  CAS  Google Scholar 

  11. Li S, Qi L, Lu L, Wang H (2013) Carbon spheres-assisted strategy to prepare mesoporous manganese dioxide for supercapacitor applications. J Solid State Chem 197:29–37

    Article  CAS  Google Scholar 

  12. Narayanan R (2017) Single step hydrothermal synthesis of carbon nanodot decorated V2O5 nanobelts as hybrid conducting material for supercapacitor application. J Solid State Chem 253:103–112

    Article  CAS  Google Scholar 

  13. Mei J, Zhang L (2015) Novel MnOOH–graphene nanocomposites, preparation, characterization and electrochemical properties for supercapacitors. J Solid State Chem 221:178–183

    Article  CAS  Google Scholar 

  14. Han D, Jing X, Xu P, Ding Y, Liu J (2014) Facile synthesis of hierarchical hollow ε-MnO2 spheres and their application in supercapacitor electrodes. J Solid State Chem 218:178–183

    Article  CAS  Google Scholar 

  15. Han D, Xu P, Jing X, Wang J, Song D, Liu J, Zhang M (2013) Facile approach to prepare hollow core–shell NiO microspherers for supercapacitor electrodes. J Solid State Chem 203:60–67

    Article  CAS  Google Scholar 

  16. Zhu J, Jiang J, Liu J, Ding R, Ding H, Feng Y, Wei G, Huang X (2011) Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application. J Solid State Chem 184:578–583

    Article  CAS  Google Scholar 

  17. Zhang N, Qi P, Ding YH, Huang CJ, Zhang JY, Fang YZ (2016) A novel reduction synthesis of the graphene/Mn3O4 nanocomposite for supercapacitors. J Solid State Chem. 237:378–384

    Article  CAS  Google Scholar 

  18. Zhang J, Wang Y, Qin Y, Yu C, Cui L, Shu X, Cui J, Zheng H, Zhang Y, Wu Y (2017) A facile one-step synthesis of Mn3O4 nanoparticles-decorated TiO2 nanotube arrays as high performance electrode for supercapacitors. J Solid State Chem. 246:269–277

    Article  CAS  Google Scholar 

  19. Feng J, Zhao J, Tang B, Liu P, Xu J (2010) The electrochemical performance of ordered mesoporous carbon/nickel compounds composite material for supercapacitor. J Solid State Chem 183:2932–2936

    Article  CAS  Google Scholar 

  20. Malak-Polaczyk A, Matei-Ghimbeu C, Vix-Guterl C, Frackowiak E (2010) Carbon/λ-MnO2 composites for supercapacitor electrodes. J Solid State Chem 183:969–974

  21. Li Z, Su Y, Yun G, Shi K, Lv X, Yang B (2014) Binder free synthesis of MnO2 nanoplates/graphene composites with enhanced supercapacitive properties. Solid State Commun 192:82–88

    Article  CAS  Google Scholar 

  22. Wang Y, Yang Y, Yang Y, Shao H (2010) Enhanced electrochemical performance of unique morphological cathode material prepared by solvothermal method. Solid State Commun 150:81–85

    Article  CAS  Google Scholar 

  23. Chen X, Li X, Jiang Y, Shi C, Li X (2005) Rational synthesis of α-MnO2 and γ-Mn2O3 nanowires with the electrochemical characterization of α-MnO2 nanowires for supercapacitor. Solid State Commun 136:94–96

    Article  CAS  Google Scholar 

  24. Qiu Y, Yang S, Deng H, Jinb L, Li W (2010) A novel nanostructured spinel ZnCo2O4 electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. J Mater Chem 20:4439–4444

    Article  CAS  Google Scholar 

  25. Gao S, Fan B, Feng R, Ye C, Wei X, Liu J, Bu X (2017) N-doped-carbon-coated Fe3O4 from metal-organic framework as efficient electro catalyst for ORR. Nano Energy 40:462–−470

    Article  CAS  Google Scholar 

  26. Gao S, Geng K (2014) Facile construction of Mn3O4 nanorods coated by a layer of nitrogen-doped carbon with high activity for oxygen reduction reaction. Nano Energy 6:44–50

    Article  CAS  Google Scholar 

  27. Bai J, Li XG, Liu GZ, Qian YT, Xiong SL (2014) Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultra long-life lithium-ion battery anode material. Adv Funct Mater 24:3012–3020

    Article  CAS  Google Scholar 

  28. Lu L, Xu S, Luo Z, Wang S, Li G, Feng C (2016) Synthesis of ZnCo2O4 microspheres with Zn0.33Co0.67CO3 precursor and their electrochemical performance. J Nanopart. Res. 18:183–194

    Article  Google Scholar 

  29. Zheng H, Xu S, Li L, Feng C, Wang S (2016) Synthesis of NiCo2O4 micro ellipsoids as anode material for lithium-ion batteries. J Electron Mater 45:4966–4972

    Article  CAS  Google Scholar 

  30. Fu JX, Wong WT, Liu WR (2015) Temperature effects on a nano-porous ZnCo2O4 anode with excellent capability for Li-ion batteries. RSC Adv 5:75838–75845

    Article  CAS  Google Scholar 

  31. Karthikeyan K, Kalpana D, Renganathan NG (2009) Synthesis and characterization of ZnCo2O4 nanomaterial for symmetric supercapacitor applications. Ionics 15:107–110

    Article  CAS  Google Scholar 

  32. Kim TW, Woo MA, Regis M, Choi KS (2014) Electrochemical synthesis of spinel type ZnCo2O4 electrodes for use as oxygen evolution reaction catalysts. J Phys Chem Lett 5:2370–2374

    Article  CAS  PubMed  Google Scholar 

  33. Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011

    Article  CAS  PubMed  Google Scholar 

  34. Guan B, Guo D, Hu L, Zhang G, Fu T, Ren W, Li J, Li Q (2014) Facile synthesis of ZnCo2O4 nanowire cluster arrays on Ni foam for high-performance asymmetric supercapacitors. J Mater Chem A 2:16116–16123

    Article  CAS  Google Scholar 

  35. Liu B, Liu B, Wang Q, Wang X, Xiang Q, Chen D, Shen G (2013) New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors. ACS Appl Mater Interfaces 5:10011–10017

    Article  CAS  PubMed  Google Scholar 

  36. Bao F, Wang X, Zhao X, Wang Y, Ji Y, Zhang H, Liu X (2014) Controlled growth of mesoporous ZnCo2O4 nanosheet arrays on Ni foam as high-rate electrodes for supercapacitors. RSC Adv 4:2393–2397

    Article  CAS  Google Scholar 

  37. Wua C, Cai J, Zhang Q, Zhou X, Zhu Y, Li L, Shen P, Zhang K (2015) Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for supercapacitors. Electrochim Acta 169:202–209

    Article  CAS  Google Scholar 

  38. Huang Y, Miao Y, Lu H, Liu T (2015) Hierarchical ZnCo2O4@ NiCo2O4 Core–sheath nanowires: bifunctionality towards high-performance supercapacitors and the oxygen-reduction reaction. Chem Eur J 21:10100–10108

    Article  CAS  PubMed  Google Scholar 

  39. Guo L, Ji Y, Xu H, Wu Z, Simon P (2003) Synthesis and evolution of rod-like nano-scaled ZnC2O4· 2H2O whiskers to ZnO nanoparticles. J Mater Chem 13:754–757

    Article  CAS  Google Scholar 

  40. Giri AK, Pal P, Ananthakumar R, Jayachandran M, Mahanty S, Panda AB (2014) 3D hierarchically assembled porous wrinkled-paper-like structure of ZnCo2O4 and co-ZnO@C as anode materials for lithium-ion batteries. Cryst Growth Des 14:3352–3359

    Article  CAS  Google Scholar 

  41. Huang T, Zhao C, Zheng R, Zhang Y, Hu Z (2015) Facilely synthesized porous ZnCo2O4 rod like nanostructure for high-rate supercapacitors. Ionics 21:3109–3115

    Article  CAS  Google Scholar 

  42. Xie Q, Li F, Guo H, Wang L, Chen Y, Yue GH, Peng DL (2013) Template-free synthesis of amorphous double-shelled zinc–cobalt citrate hollow microspheres and their transformation to crystalline ZnCo2O4 microspheres. ACS Appl Mater Interfaces 5:5508–5517

    Article  CAS  PubMed  Google Scholar 

  43. Mercado CC, Zakutayev A, Zhu K, Flynn CJ, Cahoon JF, Nozik AJ (2014) Sensitized zinc–cobalt–oxide spinel p-type photoelectrode. J Phys Chem C 118:25340–25349

    Article  CAS  Google Scholar 

  44. Guo H, Chen J, Weng W, Wang Q, Li S (2014) Facile template-free one-pot fabrication of ZnCo2O4 microspheres with enhanced photo catalytic activities under visible-light illumination. Chem Eng J 239:192–199

    Article  CAS  Google Scholar 

  45. Saravanakumar B, Muthu Lakshmi S, Ravi G, Ganesh V, Sakunthala A, Yuvakkumar R (2017) Electrochemical properties of rice-like copper manganese oxide (CuMn2O4) nanoparticles for pseudocapacitor applications. J Alloys Compd 723:115–122

    Article  CAS  Google Scholar 

  46. Saravanakumar B, Priyadharshini T, Ravi G, Ganesh V, Sakunthala A, Yuvakkumar R (2017) Hydrothermal synthesis of spherical NiCo2O4 nanoparticles as a positive electrode for pseudocapacitor applications. J Sol-Gel Sci Technol 84:297–305

    Article  CAS  Google Scholar 

  47. Saravanakumar B, Ramachandran SP, Ravi G, Ganesh V, Sakunthala A, Yuvakkumar R (2017) Morphology dependent electrochemical capacitor performance of NiMoO4 nanoparticles. Mater Lett 209:1–4

    Article  CAS  Google Scholar 

  48. Ramachandran SP, Saravanakumar B, Ganesh V, Ravi G, Sakunthala A, Yuvakkumar R (2017) Hexamine, PEG-400 effect on α-MoO3 nanoparticle synthesis for pseudo capacitance applications. J Mater Sci Mater Electron 28:13780–13786

    Article  CAS  Google Scholar 

  49. Priyadharshini T, Saravanakumar B, Ravi G, Sakunthala A, Yuvakkumar R (2017) Hexamine role on pseudocapacitive behaviour of cobalt oxide (Co3O4) nanopowders. J Nanosci Nanotechnol 17:1–7

    Article  CAS  Google Scholar 

  50. Qiao C, Zhang Y, Zhu Y, Cao C, Bao X, Xu J (2015) One-step synthesis of zinc–cobalt layered double hydroxide (Zn–Co-LDH) nanosheets for high-efficiency oxygen evolution reaction. J Mater Chem A 3:6878–6883

    Article  CAS  Google Scholar 

  51. Gai Y, Shang Y, Gong L, Su L, Hao L, Dong F, Li J (2017) A self-template synthesis of porous ZnCo2O4 microspheres for high-performance quasi-solid-state asymmetric supercapacitors. RSC Adv 7:1038–1044

    Article  CAS  Google Scholar 

  52. Silambarasan M, Padmanathan N, Ramesh PS, Geetha D (2016) Spinel CuCo2O4 nanoparticles: facile one-step synthesis, optical, and electrochemical properties, mater. Res Express 3:95021–95030

    Article  CAS  Google Scholar 

  53. Chen T, Fan Y, Wang G, Yang Q, Yang R (2015) Rationally designed hierarchical ZnCo2O4/polypyrrole nanostructures for high-performance supercapacitor electrodes. RSC Adv 5:74523–74530

    Article  CAS  Google Scholar 

  54. Ma X, Kong L, Zhang W, Liu M, Luo Y, Kang L (2014) Facile fabrication and perfect cycle stability of 3D NiO@ CoMoO4 nanocomposite on Ni foam for supercapacitors. RSC Adv 4:17884–17890

    Article  CAS  Google Scholar 

  55. Vijayakumar S, Lee SH, Ryu KS (2015) Synthesis of Zn3V2O8 nanoplatelets for lithium-ion battery and supercapacitor applications. RSC Adv 5:91822–91828

    Article  CAS  Google Scholar 

  56. Dong S, Dao AQ, Zheng B, Tan Z, Fu C, Liu H, Xiao F (2015) One-step electrochemical synthesis of three-dimensional graphene foam loaded nickel–cobalt hydroxides nanoflakes and its electrochemical properties. Electrochim Acta 152:195–201

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by UGC Start-Up Research Grant No. F.30-326/2016 (BSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yuvakkumar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanakumar, B., Ravi, G., Yuvakkumar, R. et al. Hydrothermal synthesis and electrochemical properties of ZnCo2O4 microspheres. Ionics 25, 353–360 (2019). https://doi.org/10.1007/s11581-018-2766-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2766-1

Keywords

Navigation