Skip to main content
Log in

Electrical properties of the ordered oxygen-deficient perovskite Ca2Fe0.5Ga1.5O5

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Ca2Fe0.5Ga1.5O5 is an oxygen-deficient perovskite, where the defects generated due to oxygen-deficiency are distributed in an ordered fashion. Neutron diffraction experiments indicate that the defect-order results in the formation of alternating (Ga)O4 tetrahedral and (FeGa)O6 octahedral units, forming the so-called brownmillerite-type structure. This material represents the highest degree of Ga-doping in the brownmillerite compound Ca2Fe2O5, which can be achieved using solid-state synthesis method. X-ray photoelectron spectroscopy (XPS) combined with iodometric titration was employed to determine the Fe oxidation state and the oxygen-content in Ca2Fe0.5Ga1.5O5. The XPS studies show that Fe is predominantly in trivalent state, and the iodometric titrations indicate that the oxygen stoichiometry is 5.07 per formula unit, consistent with primarily trivalent Fe. Variable-temperature electrical conductivity studies of Ca2Fe0.5Ga1.5O5 have been performed in a wide temperature range, 25–800 °C, indicating semiconducting behavior and significant contribution of ionic conductivity to total conductivity of this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Patrakeev MV, Kharton VV, Bakhteeva YA, Shaula AL, Leonidov IA, Kozhevnikov VL, Naumovich EN, Yaremchenko AA, Marques FMB (2006) Oxygen nonstoichiometry and mixed conductivity of SrFe1−xMxO3−δ (M=Al, Ga): effects of B-site doping. Solid State Sci 8(5):476–487. https://doi.org/10.1016/j.solidstatesciences.2006.01.006

    Article  CAS  Google Scholar 

  2. Gómez L, Galeano V, Parra R, Michel CR, Paucar C, Morán O (2015) Carbon dioxide gas sensing properties of ordered oxygen deficient perovskite LnBaCo2O5+δ (Ln=La, Eu). Sensors Actuators B: Chem 221:1455–1460. https://doi.org/10.1016/j.snb.2015.07.080

    Article  CAS  Google Scholar 

  3. Liu P, Luo Z, Kong J, Yang X, Liu Q, Xu H (2018) Ba0.5Sr0.5Co0.8Fe0.2O3-δ-based dual-gradient cathodes for solid oxide fuel cells. Ceram Int 44(4):4516–4519. https://doi.org/10.1016/j.ceramint.2017.12.034

    Article  CAS  Google Scholar 

  4. Chen G, Zhou W, Guan D, Sunarso J, Zhu Y, Hu X, Zhang W, Shao Z (2017) Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba(0.5)Sr(0.5)co(0.8)Fe(0.2)O(3−δ) nanofilms with tunable oxidation state. Sci Adv 3(6):e1603206. https://doi.org/10.1126/sciadv.1603206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suescun L, Chmaissem O, Mais J, Dabrowski B, Jorgensen JD (2007) Crystal structures, charge and oxygen-vacancy ordering in oxygen deficient perovskites SrMnOx (x<2.7). J Solid State Chem 180(5):1698–1707. https://doi.org/10.1016/j.jssc.2007.03.020

    Article  CAS  Google Scholar 

  6. Hodges JP, Jorgensen JD, Xiong X, Dabrowski B, Mini SM, Kimball CW, Materials Science D, Northern Illinois U (2000) Evolution of oxygen-vacancy ordered crystal structures in the perovskite series SrnFenO3n-1 (n=2, 4, 8, and ∞), and the relationship to electronic and magnetic properties. J Solid State Chem 151(190):209. https://doi.org/10.1006/jssc.1999.8640

    Article  CAS  Google Scholar 

  7. Hona RK, Huq A, Mulmi S, Ramezanipour F (2017) Transformation of structure, electrical conductivity, and magnetism in AA′Fe2O6−δ, a = Sr, ca and a′ = Sr. Inorg Chem 56(16):9716–9724. https://doi.org/10.1021/acs.inorgchem.7b01228

    Article  CAS  PubMed  Google Scholar 

  8. Hona RK, Huq A, Ramezanipour F (2017) Unraveling the role of structural order in the transformation of electrical conductivity in Ca2FeCoO6−δ, CaSrFeCoO6−δ, and Sr2FeCoO6−δ. Inorg Chem 56(23):14494–14505. https://doi.org/10.1021/acs.inorgchem.7b02079

    Article  CAS  PubMed  Google Scholar 

  9. Mulmi S, Hona RK, Jasinski JB, Ramezanipour F (2018) Electrical conductivity of Sr2-xCaxFeMnO5 (x = 0, 1, 2). J Solid State Electrochem 22:2329–2338. https://doi.org/10.1007/s10008-018-3947-6

    Article  CAS  Google Scholar 

  10. Hona RK, Ramezanipour F (2018) Variation in electrical conductivity of A2 Fe2 O5 (A = Sr, Ba): the role of structural order. Mater Res Express 5(7):076307

    Article  CAS  Google Scholar 

  11. Ramezanipour F, Greedan JE, Cranswick LMD, Garlea VO, Donaberger RL, Siewenie J (2012) Systematic study of compositional and synthetic control of vacancy and magnetic ordering in oxygen-deficient perovskites Ca2Fe2–xMnxO5+yand CaSrFe2–xMnxO5+y (x = 1/2, 2/3, and 1; y = 0–1/2). J Am Chem Soc 134(6):3215–3227. https://doi.org/10.1021/ja210985t

    Article  CAS  PubMed  Google Scholar 

  12. Hona RK, Ramezanipour F (2018) Disparity in electrical and magnetic properties of isostructural oxygen-deficient perovskites BaSrCo2O6−δ and BaSrCoFeO6−δ. J Mater Sci Mater Electron 29:13464–13473. https://doi.org/10.1007/s10854-018-9471-8

    Article  CAS  Google Scholar 

  13. Ramezanipour F, Greedan JE, Siewenie J, Proffen T, Ryan DH, Grosvenor AP, Donaberger RL (2011) Local and average structures and magnetic properties of Sr2FeMnO5+y, y = 0.0, 0.5. Comparisons with Ca2FeMnO5 and the effect of the A-site cation. Inorg Chem 50(16):7779–7791. https://doi.org/10.1021/ic200919m

    Article  CAS  PubMed  Google Scholar 

  14. Ramezanipour F, Greedan JE, Siewenie J, Donaberger RL, Turner S, Botton GA (2012) A vacancy-disordered, oxygen-deficient perovskite with long-range magnetic ordering: local and average structures and magnetic properties of Sr2Fe1.5Cr0.5O5. Inorg Chem 51(4):2638–2644. https://doi.org/10.1021/ic202590r

    Article  CAS  PubMed  Google Scholar 

  15. Hona RK, Huq A, Ramezanipour F (2018) Magnetic structure of CaSrFeCoO6–δ: correlations with structural order. Mater Res Bull 106:131–136. https://doi.org/10.1016/j.materresbull.2018.05.030

    Article  CAS  Google Scholar 

  16. Ramezanipour F, Greedan JE, Grosvenor AP, Britten JF, Cranswick LMD, Garlea VO (2010) Intralayer cation ordering in a brownmillerite superstructure: synthesis, crystal, and magnetic structures of Ca2FeCoO5. Chem Mater 22(21):6008–6020. https://doi.org/10.1021/cm1023025

    Article  CAS  Google Scholar 

  17. Turner S, Verbeeck J, Ramezanipour F, Greedan JE, Van Tendeloo G, Botton GA (2012) Atomic resolution coordination mapping in Ca2FeCoO5 brownmillerite by spatially resolved electron energy-loss spectroscopy. Chem Mater 24(10):1904–1909. https://doi.org/10.1021/cm300640g

    Article  CAS  Google Scholar 

  18. Ramezanipour F, Greedan JE, Cranswick LMD, Garlea VO, Siewenie J, King G, Llobet A, Donaberger RL (2012) The effect of the B-site cation and oxygen stoichiometry on the local and average crystal and magnetic structures of Sr2Fe1.9M0.1O5+y (M = Mn, Cr, Co; y = 0, 0.5). J Mater Chem 22(19):9522–9538. https://doi.org/10.1039/C2JM30957B

    Article  CAS  Google Scholar 

  19. Ramezanipour F, Cowie B, Derakhshan S, Greedan JE, Cranswick LMD (2009) Crystal and magnetic structures of the brownmillerite compound Ca2Fe1.039(8)Mn0.962(8)O5. J Solid State Chem 182(1):153–159. https://doi.org/10.1016/j.jssc.2008.10.010

    Article  CAS  Google Scholar 

  20. Fossdal A, Menon M, Wærnhus I, Wiik K, Einarsrud MA, Grande T (2005) Crystal structure and thermal expansion of La1−xSrxFeO3−δ materials. J Am CeramSoc 87(10):1952–1958. https://doi.org/10.1111/j.1151-2916.2004.tb06346.x

    Article  Google Scholar 

  21. Anikina PV, Markov AA, Patrakeev MV, Leonidov IA, Kozhevnikov VL (2009) The structure, nonstoichiometry, and thermodynamic characteristics of oxygen in strontium ferrite doped with niobium, SrFe1−xNb xO3−δ. Russ J Phys Chem A 83(5):699–704. https://doi.org/10.1134/S0036024409050021

    Article  CAS  Google Scholar 

  22. Colville AA, Geller S (1971) The crystal structure of brownmillerite, Ca2FeAlO5. Acta Cryst B27:2311

    Article  Google Scholar 

  23. D’Hondt H, Hadermann J, Abakumov AM, Kalyuzhnaya AS, Rozova MG, Tsirlin AA, Nath R, HaiyanTan JV, Antipov EV, Van Tendeloo G (2009) Synthesis, crystal structure and magnetic properties of the Sr2Al 0.78Mn1.22O5.2 anion-deficient layered perovskite. J Solid State Chem 182:356–363

    Article  CAS  Google Scholar 

  24. Lindberg F, Istomin SY, Berastegui P, Svensson G, Kazakov SM, Antipov EV (2003) Synthesis and structural studies of Sr2Co2−xGaxO5, 0.3⩽x⩽0.8. J Solid State Chem 173(2):395–406. https://doi.org/10.1016/S0022-4596(03)00129-4

    Article  CAS  Google Scholar 

  25. Zhang GB, Smyth DM (1995) Defects and transport of the brownmillerite oxides with high oxygen ion conductivity — Ba2In2O5. Solid State Ionics 82(3):161–172. https://doi.org/10.1016/0167-2738(95)00196-2

    Article  CAS  Google Scholar 

  26. Didier C, Claridge J, Rosseinsky M (2014) Crystal structure of brownmillerite Ba2InGaO5. J Solid State Chem 218:38–43. https://doi.org/10.1016/j.jssc.2014.06.011

    Article  CAS  Google Scholar 

  27. Mohn CE, Allan NL, Stølen S (2006) Sr and Ga substituted Ba2In2O5: linking ionic conductivity and the potential energy surface. Solid State Ionics 177(3):223–228. https://doi.org/10.1016/j.ssi.2005.11.006

    Article  CAS  Google Scholar 

  28. Kahlenberg V, Shaw CSJ (2001) Ca2Ga2O5: a new high pressure oxogallate. Z Kristallog - Cryst Mater 216(4):206–209

  29. Kahlenberg V, Goettgens V, Mair P, Schmidmair D (2015) High-pressure synthesis and crystal structures of the strontium oxogallates Sr2Ga2O5 and Sr5Ga6O14. J Solid State Chem 228:27–35. https://doi.org/10.1016/j.jssc.2015.04.016

    Article  CAS  Google Scholar 

  30. Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR:86–748

  31. Toby BH (2001) A graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  CAS  Google Scholar 

  32. Luo K, Amano Patino M, Hayward MA (2015) Ca2Cr0.5Ga1.5O5—an extremely redox-stable brownmillerite phase. J Solid State Chem 222:71–75. https://doi.org/10.1016/j.jssc.2014.11.011

    Article  CAS  Google Scholar 

  33. Julián Morales LS, Martín F, Berry F, Renc X (2005) Synthesis and characterization of nanometric Iron and Iron-titanium oxides by mechanical milling: electrochemical properties as anodic materials in Lithium cells. J Electrochem Soc 152(9):A1748–A1754

    Article  CAS  Google Scholar 

  34. Doi A, Nomura M, Obukuro Y, Maeda R, Obata K, Matsushima S, Kobayashi K (2014) Characterization of Ti-doped CaFe2O4 prepared from a malic acid complex. J Ceram Soc Jpn 122(2):175–178

    Article  CAS  Google Scholar 

  35. Ruttanapun C, Maensiri S (2015) Effects of spin entropy and lattice strain from mixed-trivalent Fe3+/Cr3+ on the electronic, thermoelectric and optical properties of delafossite CuFe1− xCrxO2 ( x = 0.25, 0.5, 0.75). J Phys D Appl Phys 48:495103. https://doi.org/10.1088/0022-3727/48/49/495103

    Article  CAS  Google Scholar 

  36. Ghaffari M, Liu T, Huang H, Tan OK, Shannon M (2012) Investigation of local structure effect and X-ray absorption characteristics (EXAFS) of Fe (Ti) K-edge on photocatalyst properties of SrTi(1−x)FexO(3−δ). Mater Chem Phys 136(2):347–357. https://doi.org/10.1016/j.matchemphys.2012.06.037

    Article  CAS  Google Scholar 

  37. Mueller DN, De Souza RA, Yoo H-I, Martin M (2012) Phase stability and oxygen nonstoichiometry of highly oxygen-deficient perovskite-type oxides: a case study of (Ba,Sr)(Co,Fe)O3−δ. Chem Mater 24(2):269–274. https://doi.org/10.1021/cm2033004

    Article  CAS  Google Scholar 

  38. Shaula A, Pivak Y, Waerenborgh J, Gaczynski P, Yaremchenko A, Kharton V (2006) Ionic conductivity of brownmillerite-type calcium ferrite under oxidizing conditions. Solid State Ionics 177(33–34):2923–2930. https://doi.org/10.1016/j.ssi.2006.08.030

    Article  CAS  Google Scholar 

  39. Asenath-Smith E, Lokuhewa IN, Misture ST, Edwards DD (2010) p-Type thermoelectric properties of the oxygen-deficient perovskite Ca2Fe2O5 in the brownmillerite structure. J Solid State Chem 183(7):1670–1677. https://doi.org/10.1016/j.jssc.2010.05.016

    Article  CAS  Google Scholar 

  40. Zhang Q, Xu ZF, Wang LF, Gao SH, Yuan SJ (2015) Structural and electromagnetic properties driven by oxygen vacancy in Sr2FeMoO6−δ double perovskite. J Alloys Compd 649:1151–1155. https://doi.org/10.1016/j.jallcom.2015.07.211

    Article  CAS  Google Scholar 

  41. Kozhevnikov VL, Leonidov IA, Mitberg EB, Patrakeev MV, Petrov AN, Poeppelmeier KR (2003) Conductivity and carrier traps in La1−xSrxCo1−zMnzO3−δ (x=0.3; z=0 and 0.25). J Solid State Chem 172(2):296–304. https://doi.org/10.1016/S0022-4596(03)00088-4

    Article  CAS  Google Scholar 

  42. Kontoulis I, Steele BCH (1992) Fabrication and conductivity of a new compound Ca2Cr2O5. J Eur Ceram Soc 9:459–462

    Article  CAS  Google Scholar 

  43. Asenath-Smith E, Misture ST, Edwards DD (2011) Structural behavior and thermoelectric properties of the brownmillerite system Ca2(ZnxFe2−x)O5. J Solid State Chem 184(8):2167–2177. https://doi.org/10.1016/j.jssc.2011.06.009

    Article  CAS  Google Scholar 

  44. Bhosale DR, Yusuf SM, Kumar A, Mukadam MD, Patil SI (2017) High oxide ion conductivity below 500 °C in garnets LaxY3-xFe5O12+δ. Phys Rev Mater 1(1):015001. https://doi.org/10.1103/PhysRevMaterials.1.015001

    Article  Google Scholar 

  45. Corallini S, Ceretti M, Cousson A, Ritter C, Longhin M, Papet P, Paulus W (2017) Cubic Sr2ScGaO5 perovskite: structural stability, oxygen defect structure, and ion conductivity explored on single crystals. Inorg Chem 56(5):2977–2984. https://doi.org/10.1021/acs.inorgchem.6b03106

    Article  CAS  PubMed  Google Scholar 

  46. Fargali AA, Zayed MK, Khedr MH, Moustafa AF (2008) Phase and conductivity dynamics of strontium hexaferrite nanocrystals in a hydrogen gas flow. Int J Phys Sci 3:131–139

    Google Scholar 

  47. Richardson G, O'Kane SEJ, Niemann RG, Peltola TA, Foster JM, Cameron PJ, Walker AB (2016) Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? Energy Environ Sci 9(4):1476–1485. https://doi.org/10.1039/C5EE02740C

    Article  CAS  Google Scholar 

  48. Andoulsi R, Horchani-Naifer K, Férid M (2013) Electrical conductivity of La1−xCaxFeO3−δ solid solutions. Ceram Int 39(6):6527–6531. https://doi.org/10.1016/j.ceramint.2013.01.085

    Article  CAS  Google Scholar 

  49. Pizzini S (2015) Physical chemistry of semiconductor materials and Processes. Wiley, West Sussex

    Book  Google Scholar 

Download references

Acknowledgements

F.R. thanks the Conn Center for Renewable Energy Research and Jacek Jasinski for their help. A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.

Funding

This work is supported in part by the National Science Foundation under Cooperative Agreement No. 1355438.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Ramezanipour.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hona, R.K., Huq, A. & Ramezanipour, F. Electrical properties of the ordered oxygen-deficient perovskite Ca2Fe0.5Ga1.5O5. Ionics 25, 1315–1321 (2019). https://doi.org/10.1007/s11581-018-2759-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2759-0

Keywords

Navigation