Skip to main content
Log in

Study on the structural, spectroscopic, and dielectric properties of 1:2 ordered Ca3(B′Ta2)O9 (B′ = Mg and Zn)

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Herein, we report the structural, bonding, dielectric, and electrical transport properties of Ca3(MgTa2)O9 (CMT) and Ca3(ZnTa2)O9 (CZT) with the chemical formula Ca(Mg1/3Ta2/3)O3 and Ca(Zn1/3Ta2/3)O3, respectively, synthesized by the solid-state reaction technique. The Rietveld refinement of powder X-ray diffraction (PXRD) patterns has confirmed that the CMT and CZT are triple perovskites belonging to monoclinic P2 1 /c space group with 1:2 B-site ordering. The unit cell contains four formula units of CMT and CZT. The results of the structural study are corroborated by Fourier transform infrared (FTIR) and Raman spectroscopic studies. Comparing the crystal structures of 1:2 ordered perovskites with the chemical formula Ba(B′1/3B″2/3)O3 and Ca(B′1/3B″2/3)O3, we have predicted that for this group of perovskites, only calcium-based systems exhibit a monoclinic crystal structure of P2 1 /c space group due to the smaller ionic radii of Ca2+ compared to those of Ba2+. The grain size ranges between 0.38 and 2.66 μm for CMT and 0.11 and 1.60 μm for CZT, respectively. The analysis of the dielectric permittivity in the framework of the modified Cole-Cole model has revealed that the dielectric relaxation in CMT and CZT is strongly temperature dependent and polydispersive in nature. The activation energies associated with dielectric and electrical transport properties are ≈0.35 and 0.33 eV for CMT and CZT, respectively. The polaron hopping governs the electrical and dielectric response of the samples. It has been found that CMT and CZT exhibit enhancement in dielectric properties compared to their niobate counterparts and 1:1 ordered tantalum-based perovskite oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fu MS, Liu XQ, Chen XM, Zeng YW (2010) Effects of Mg substitution on microstructures and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 perovskite ceramics. J Am Ceram Soc 93:787–795

    Article  CAS  Google Scholar 

  2. Shah MR, AktherHossain AKM (2013) Structural, dielectric and complex impedance spectroscopy studies of lead free Ca0.5+xNd0.5-x(Ti0.5Fe0.5)O3. J Mater Sci Technol 29:323–329

    Article  CAS  Google Scholar 

  3. Chen CT, Huang CY, Lin YM, Lee CT (2011) Structure and microwave dielectric property relations in barium cobalt magnesium niobate ceramics. Jpn J Appl Phys 50:091503

    Article  Google Scholar 

  4. Belous A, Ovchar O, Kramarenko O, Mischuk D, Jancar B, Spreitzer M, Suvorov D, Annino G, Grebennikov D, Mascher P (2009) Low-loss perovskite niobates Ba(M1/32+Nb2/3)O3: composition, structure, and microwave dielectric properties. Ferroelectrics 387:36–45

    Article  CAS  Google Scholar 

  5. Ovchar O, Belous A, Kramarenko O, Mischuk D, Jancar B, Spreitzer M, Suvorov D, Annino G, Grebennikov D, Mascher P (2009) The effect of impurity phases on the structure and properties of microwave dielectrics based on complex perovskites Ba(Co1/32+Nb2/3)O3. Ferroelectrics 387:189–196

    Article  CAS  Google Scholar 

  6. Yang Z, Zhang Y, You G, Zhang K, Xiong R, Shi J (2012) Dielectric and electrical transport properties of the Fe3+− doped CaCu3Ti4O12. J Mater Sci Technol 28:1145–1150

    Article  Google Scholar 

  7. Hungria T, Alguero M, Castro A (2007) Grain growth control in NaNbO3–SrTiO3 ceramics by mechanosynthesis and spark plasma sintering. J Am Ceram Soc 90:2122–2127

    Article  CAS  Google Scholar 

  8. Lu H, Zhu L, Kim JP, Son SH, Park JH (2012) Structural, sintering and electrical properties of Cr-doped La06S.r0.4Crx Fe1−xO3−δ(x=0.10, 0.20) oxides. J Mater Sci Technol 28:654–660

    Article  CAS  Google Scholar 

  9. Agrawal L, Dutta A, Shannigrahi S, Singh BP, Sinha TP (2011) Impedance spectroscopy study and ground state electronic properties of In(Mg1/2Ti1/2)O3. Physica B 406:1081–1087

    Article  CAS  Google Scholar 

  10. Prakash V, Dutta A, Choudhary SN, Sinha TP (2007) Dielectric relaxation in perovskite Ba(Zn1/2W1/2)O3. Mater Sci Eng B 142:98–105

    Article  CAS  Google Scholar 

  11. Bajpai PK, Singh KN (2011) Dielectric relaxation and ac conductivity study of Ba(Sr1/3Nb2/3)O3. Physica B 406:1226–1232

    Article  CAS  Google Scholar 

  12. Bajpai PK, Pastor M, Singh KN (2011) Relaxor behavior and dielectric relaxation in Pb(Ba1/3Nb2/3)O3: a phase pure new relaxor material. J Appl Phys 109:014114

    Article  Google Scholar 

  13. Dutta A, Bharti C, Sinha TP (2008) Dielectric relaxation in Sr(Mg1/3Nb2/3)O3. Physica B 403:3389–3393

    Article  CAS  Google Scholar 

  14. Dutta A, Sinha TP (2010) Impedance spectroscopy study of BaMg1/3Nb2/3O3: frequency and time domain analyses. Physica B 405:1475–1479

    Article  CAS  Google Scholar 

  15. Dutta A, Bharti C, Sinha TP (2008) AC conductivity and dielectric relaxation in CaMg1/3Nb2/3O3. Mater Res Bull 43:1246–1254

    Article  CAS  Google Scholar 

  16. Hoque MM, Dutta A, Kumar S, Sinha TP (2012) The impedance spectroscopic study and dielectric relaxation in A(Ni1/3Ta2/3)O3 [A=Ba, Ca and Sr]. Physica B 407:3740–3748

    Article  CAS  Google Scholar 

  17. Hoque MM, Dutta A, Kumar S, Sinha TP (2014) Dielectric relaxation and conductivity of Ba(Mg1/3Ta2/3)O3 and Ba(Zn Ta)O. J Mater Sci Technol 30:311–320

    Article  CAS  Google Scholar 

  18. Dutta A, Sinha TP (2011) Structural and dielectric properties of A(Fe1/2Ta1/2)O3[A = Ba, Sr, Ca]. Mater Res Bull 46:518–524

    Article  CAS  Google Scholar 

  19. Dias A, Paschoal CWA, Moreira RL (2003) Infrared spectroscopic investigations in ordered barium magnesium niobate ceramics. J Am Ceram Soc 86(11):1985–1987

    Article  CAS  Google Scholar 

  20. Silva RX, Moreira RL, Almeida RM, Paniago R, Paschoal CWA (2015) Intrinsic dielectric properties of magnetodielectric La CoMnO. J Appl Phys 117:214105

    Article  Google Scholar 

  21. Sagala DA, Koyasu S (1993) Infrared reflection of Ba(Mg1/3Ta2/3)O3 ceramics. J Am Ceram Soc 76(10):2433–2436

    Article  CAS  Google Scholar 

  22. Dias A, Khalam LA, Sebastian MT, Paschoal CWA, Moreira RL (2006) Chemical substitution in Ba (RE1/2Nb1/2) O3(RE= La, Nd, Sm, Gd, Tb, and Y) microwave ceramics and its influence on the crystal structure and phonon modes. Chem Mater 18:214–220

    Article  CAS  Google Scholar 

  23. Bhalla AS, Guo R, Roy R (2000) The perovskite structure – a review of its role in ceramic science and technology. Mat Res Innov 4:3–26

    Article  CAS  Google Scholar 

  24. Galasso F (1990) Perovskites and high-Tc superconductors. Gordon and Breach Science, New York, pp 3–58

    Google Scholar 

  25. Galasso F, Pyle J (1963) Ordering in compounds of the A(B´0.33Ta0.67)O3 type. Inorg Chem 2:482–484

    Article  CAS  Google Scholar 

  26. Galasso F, Pyle J (1963) Preparation and study of ordering in A(B´0.33Nb0.67)O3perovskite-type compounds. J Phys Chem 67:1561–1562

    Article  CAS  Google Scholar 

  27. Takahashi J, Fujii T, Shimada S, Kodaira K (1999) Changes in ordered structure and dielectric properties with the A-site and B-site cation ratios of complex perovskites (Sr1-xBax)(Sr0.33Ta0.67)O3. J Eur Ceram Soc 19:1089–1093

    Article  CAS  Google Scholar 

  28. Lee C, Chou C, Tsai D (1997) Effect of La/K A-site substitutions on the ordering of Ba(Zn1/3Ta2/3)O3. J Am Ceram Soc 80:2885–2890

    Article  CAS  Google Scholar 

  29. Akbas MA, Davies PK (1998) Cation ordering transformations in the Ba(Zn1/3Nb1/3)O3–La(Zn2/3Nb2/3)O3 system. J Am Ceram Soc 81:1061–1064

    Article  CAS  Google Scholar 

  30. Lufaso MW (2004) Crystal structures, modeling, and dielectric property relationships of 2:1 ordered Ba3MM′2O9(M=Mg, Ni, Zn; M′ =Nb, Ta) perovskites. Chem Mater 16:2148–2156

    Article  CAS  Google Scholar 

  31. Mani R, Selvamani P, Joy JE, Gopalakrishnan J (2007) Study of Ba3MIIMIVWO9(MII= Ca, Zn; MIV= Ti, Zr) perovskite oxides: competition between 3C and 6H perovskite structures. Inorg Chem 46:6661–6667

    Article  CAS  Google Scholar 

  32. Park CS, Paik JH, Nahm S, Lee HJ, Park HM, Kim KY (1999) Crystal structure of A2+(Mg1/3Nb2/3)O3, (A2+=Sr2+and Ca2+) ceramics. J Mater Sci Lett 18:691–694

    Article  CAS  Google Scholar 

  33. Lee HJ, Park HM, Cho YK, Song YW, Nahm S, Byun JD (2001) Microstructure characterizations in calcium magnesium niobate. J Am Ceram Soc 84:1632–1636

    Article  CAS  Google Scholar 

  34. Fu MS, Liu XQ, Chen XM, Zeng YW (2008) Microstructure and microwave dielectric properties of (1-x)Ca(Mg1/3Ta2/3)O3/xCaTiO3 ceramics. J Am Ceram Soc 91:1163–1168

    Article  CAS  Google Scholar 

  35. Fu MS, Liu XQ, Chen XM (2008) Raman spectra analysis for Ca(B′1/3B′′2/3)O3-based complex perovskite ceramics. J Appl Phys 104:104108

    Article  Google Scholar 

  36. Fu MS, Liu XQ, Chen XM, Zeng YW (2008) Cation ordering and domain boundaries in Ca[(Mg1/3Ta2/3)1-xTi]O3 microwave dielectric ceramics. J Am Ceram Soc 91:2581–2587

    Article  CAS  Google Scholar 

  37. Chen XM, Liu D, Hou RZ, Hu X, Liu XQ (2004) Microstructures and microwave dielectric characteristics of Ca(Zn1/3Nb2/3)O3complex perovskite ceramics. J Am Ceram Soc 87:2208–2212

    Article  CAS  Google Scholar 

  38. Akbas MA, Davies PK (1998) Ordering-induced microstructures and microwave dielectric properties of the Ba(Mg1/3Nb2/3)O3–BaZrO3 system. J Am Ceram Soc 81:670–676

    Article  CAS  Google Scholar 

  39. Altomare A, Caliandro R, Camalli M, Cuocci C, Giacovazzo C, Moliterni AGG, Rizzi R (2004) J Appl Crystallogr 37:1025–1028

    Article  CAS  Google Scholar 

  40. Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory, Report LAUR 86-784

  41. Glazer AM (1975) Simple ways of determining perovskite structures. Acta Crystallogr A31:756–762

    Article  CAS  Google Scholar 

  42. Zhou JS, Goodenough JB (2005) Universal octahedral-site distortion in orthorhombic perovskite oxides. Phys Rev Lett 94:065501

    Article  Google Scholar 

  43. Goldschmidt VM (1926) Naturwissenschaften 14:477–485

    Article  CAS  Google Scholar 

  44. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  45. Reaney IM, Colla EL, Setter N (1994) Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor. Jpn J Appl Phys 33:3984–3990

    Article  CAS  Google Scholar 

  46. Woodward DI, Reaney IM (2005) Electron diffraction of tilted perovskites. Acta Crystallogr B61:387–399

    Article  CAS  Google Scholar 

  47. Levin I, Chan JY, Geyer RG, Maslar JE, Vanderah TA (2001) Cation ordering types and dielectric properties in the complex perovskiteCa(Ca1/3Nb2/3)O3. J Solid State Chem 156:122–134

    Article  CAS  Google Scholar 

  48. Siny IG, Tao R, Katiyar RS, Bhalla AS, Guo R (1998) Raman spectroscopy of Mg-Ta order–disorder in BaMg1/3Ta2/3O3. J Phys Chem Solids 59(2):181–195

    Article  CAS  Google Scholar 

  49. Dias A, William C, Paschoal A, Moreira RL (2003) Infrared spectroscopic investigations in ordered barium magnesium niobate ceramics. J Am Ceram Soc 86(11):1985–1987

    Article  CAS  Google Scholar 

  50. Rodrigues JEFS, Moreira E, Bezerra DM, Maciel AP, Paschoal CWA (2013) Ordering and phonons in Ba3CaNb2O9 complex perovskite. Mater Res Bull 48:3298–3303

    Article  CAS  Google Scholar 

  51. Moreira RL, Matinaga FM, Dias A (2001) Raman-spectroscopic evaluation of the long-range order in Ba(B′1/3B″2/3)O3 ceramics. Appl Phys Lett 78:428

    Article  CAS  Google Scholar 

  52. Siny IG, Katiyar RS, Bhalla AS (1998) Cation arrangement in the complex perovskites and vibrational spectra. J Raman Spectrosc 29:385–390

    Article  CAS  Google Scholar 

  53. Rodrigues JEFS, Bezerra DM, Maciel AP, Paschoal CWA (2014) Synthesis and structural ordering of nano-sized Ba3B′Nb2O9(B′ = Ca and Zn) powders. Ceram Int 40:5921–5930

    Article  CAS  Google Scholar 

  54. Li LX, Xu D, Li XQ, Liuc WC, Jia Y (2014) Excellent fluoride removal properties of porous hollow MgO microspheres. New J Chem 38:5445–5452

    Article  CAS  Google Scholar 

  55. Maensiria S, Laokula P, Promarak V (2006) Synthesis and optical properties of nanocrystalline ZnO powders by a simple method using zinc acetate dihydrate and poly (vinyl pyrrolidone). J Cryst Growth 289:102–106

    Article  Google Scholar 

  56. Zheng H, Reaney IM, Csete de Györgyfalva GDC, Ubic R, Seabra MP, Ferreira VM, Yarwood J (2004) Raman spectroscopy of CaTiO3-based perovskite solid solutions. J Mater Res 19:488–495

    Article  CAS  Google Scholar 

  57. Zheng H, Bagshaw H, Csete de Györgyfalva GDC, Reaney IM, Ubic R, Yarwood J (2003) Raman spectroscopy and microwave properties of CaTiO3-based ceramics. J Appl Phys 94:2948–2956

    Article  CAS  Google Scholar 

  58. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–351

    Article  CAS  Google Scholar 

  59. Cole KS, Cole RH (1942) Dispersion and absorption in dielectrics II. Direct current characteristics. J Chem Phys 10:98–105

    Article  CAS  Google Scholar 

  60. Coelho R (1978) Physics of dielectrics. Elsevier, New York

    Google Scholar 

  61. Maity SK, Dutta A, Kumar S, Sinha TP (2013) Electrical properties of Ba2YbNbO6: an impedance spectroscopy study. Phys Scr 88:065702

    Article  Google Scholar 

  62. Gerhardt R (1994) Impedance and dielectric spectroscopy revisited: distinguishing localized relaxation from long-range conductivity. J Phys Chem Solids 55:1491–1506

    Article  CAS  Google Scholar 

  63. Mckubre MCH, Macdonald JR (1987) Impedance spectroscopy emphasizing solid materials and systems. In: JR Macdonald (ed.) Wiley, New York, pp 191

  64. Bharti C, Sinha TP (2010) Dielectric properties of rare earth double perovskite oxide Sr2CeSbO6. Solid State Sci 12:498–502

    Article  CAS  Google Scholar 

  65. Idrees M, Nadeem M, Hassan MM (2010) Investigation of conduction and relaxation phenomena in LaFe0.9Ni0.1O3 by impedance spectroscopy. J Phys D Appl Phys 43:155401

    Article  Google Scholar 

  66. Jung WH (2001) Dielectric loss anomaly and polaron hopping conduction of Gd1/3Sr2/3FeO3. J Appl Phys 90:2455–2458

    Article  CAS  Google Scholar 

  67. Schönhals A, Kremer F (2003) Broadband dielectric spectroscopy. Springer, Berlin, pp 59–98

    Book  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of CSIR, New Delhi, Government of India, through grant number 60(0106)/13-EMR-II. The authors gratefully acknowledge the financial support of the Department of Science & Technology, Govt. of India through FIST and PURSE program of the Department of Physics, Jadavpur University. The financial assistance granted by UGC, Govt. of India through SAP and UPE program is also acknowledged. We gratefully acknowledge Prof. R. N. Joardar for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoque, M.M., Barua, A., Dutta, A. et al. Study on the structural, spectroscopic, and dielectric properties of 1:2 ordered Ca3(B′Ta2)O9 (B′ = Mg and Zn). Ionics 23, 471–483 (2017). https://doi.org/10.1007/s11581-016-1916-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1916-6

Keywords

Navigation