Skip to main content
Log in

Synergistic effect between glutamic acid and rare earth cerium (III) as corrosion inhibitors on AA5052 aluminum alloy in neutral chloride medium

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The synergistic effect of glutamic acid (Glu) and rare earth cerium (III) ion on corrosion inhibition for AA5052 aluminum alloy in 3 wt% NaCl was investigated by electrochemical impedance spectroscopy (EIS), polarization curves and SEM/EDS surface analysis. The results show that the maximum inhibition efficiency reaches 85.4% for 0.05 mM Glu + 0.30 mM Ce3+. The combination of glutamic acid and cerium nitrate produces a strong synergistic effect and forms more complex films to retard the cathodic processes of AA5052 alloy corrosion reaction. Quantum chemistry calculation and molecular dynamics simulation have been taken to analyze the synergistic mechanism. Glu molecules are adsorbed on Al2O3 surface via its polar atoms, and the cerium salt can fill the defects of adsorption film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang DP, Li H, Liu J, Zhang DQ, Gao LX, Lin T (2015) Evaluation of AA5052 alloy anode in alkaline electrolyte with organic rare-earth complex additives for aluminum-air batteries. J Power Sources 293:484–491

    Article  CAS  Google Scholar 

  2. Liu J, Wang DP, Zhang DQ, Gao LX, Lin T (2016) Synergistic effects of carboxymethyl cellulose and ZnO as alkaline electrolyte additives for aluminum anodes with a view towards Al-air batteries. J Power Sources 335:1–11

    Article  CAS  Google Scholar 

  3. Kozhukharov SV, Acuña OF, Machkova MS, Kozhukharov VS (2014) Influence of buffering on the spontaneous deposition of cerium conversion coatings for corrosion protection of AA2024-T3 aluminum alloy. J Appl Electrochem 44(10):1093–1105

    Article  CAS  Google Scholar 

  4. Verma C, Singh P, Bahadur I, Ebenso EE, Quraishi MA (2015) Electrochemical, thermodynamic, surface and theoretical investigation of 2-aminobenzene-1,3-dicarbonitriles as green corrosion inhibitor for aluminum in 0.5 M NaOH. J Mol Liq 209:767–778

    Article  CAS  Google Scholar 

  5. Bunker BC, Nelson GC, Zavadil KR, Barbour J, Wall F, Sullivan J et al (2002) Hydration of passive oxide films on aluminum. J Phys Chem B 106:4705–4713

    Article  CAS  Google Scholar 

  6. Balgude D, Sabnis A (2012) Sol–gel derived hybrid coatings as an environment friendly surface treatment for corrosion protection of metals and their alloys. J Sol-Gel Sci Technol 64(1):124–134

    Article  CAS  Google Scholar 

  7. Yasakau KA, Zheludkevich ML, Lamaka SV, Ferreira MGS (2006) Mechanism of corrosion inhibition of AA2024 by rare-earth compounds. J Phys Chem B 110:5515–5528

    Article  CAS  PubMed  Google Scholar 

  8. Hinton B (1992) Corrosion inhibition with rare earth metal salts. J Alloys Compd 180:15–25

    Article  CAS  Google Scholar 

  9. Davo B, De Damborenea J (2004) Use of rare earth salts as electrochemical corrosion inhibitors for an Al–Li–Cu (8090) alloy in 3.56% NaCl. Electrochim Acta 49:4957–4965

    Article  CAS  Google Scholar 

  10. Hu TH, Shi HW, Wei T, Liu FC, Fan SH, Han EH (2015) Cerium tartrate as a corrosion inhibitor for AA 2024-T3. Corros Sci 95:152–161

    Article  CAS  Google Scholar 

  11. Shi HW, Han EH, Liu FC (2011) Corrosion protection of aluminum alloy 2024-T3 in 0.05 M NaCl by cerium cinnamate. Corros Sci 53:2374–2384

    Article  CAS  Google Scholar 

  12. Machkova M, Matter E, Kozhukharov S, Kozhukharov V (2013) Effect of the anionic part of various Ce (III) salts on the corrosion inhibition efficiency of AA2024 aluminum alloy. Corros Sci 69:396–405

    Article  CAS  Google Scholar 

  13. Srivastava V, Haque J, Verma C, Singh P, Lgaz H, Salghi R, Quraishi MA (2017) Amino acid based imidazolium zwitterions as novel and green corrosion inhibitors for mild steel: experimental, DFT and MD studies. J Mol Liq 244:340–352

    Article  CAS  Google Scholar 

  14. Aouniti A, Khaled K, Hammouti B (2013) Correlation between inhibition efficiency and chemical structure of some amino acids on the corrosion of armco iron in molar HCl. Int J Electrochem Sci 8:5925–5943

    CAS  Google Scholar 

  15. Rani BEA, Basu BBJ (2012) Green inhibitors for corrosion protection of metals and alloys: an overview. Int J Corros 2:1–15

    Article  Google Scholar 

  16. EL Ibrahimi B, Jmiai A, Bazzi L, EL Issami S (2017) Amino acids and their derivatives as corrosion inhibitors for metals and alloys. Arab J Chem

  17. Yu YZ, Zhang DQ, Zeng HJ, Xie B, Gao LX, Lin T (2015) Synergistic effects of sodium lauroyl sarcosinate and glutamic acid in inhibition assembly against copper corrosion in acidic solution. Appl Surf Sci 355:1229–1237

    Article  CAS  Google Scholar 

  18. Eid S, Abdallah M, Kamar E, El Etre A (2015) Corrosion inhibition of and silicon alloys in sodium hydroxide solutions by methyl cellulose. J Mater Environ Sci 6:892–901

    CAS  Google Scholar 

  19. Gao H, Li Q, Dai Y, Luo F, Zhang HX (2010) High efficiency corrosion inhibitor 8-hydroxyquinoline and its synergistic effect with sodium dodecylbenzenesulphonate on AZ91D magnesium alloy. Corros Sci 52(5):1603–1609

    Article  CAS  Google Scholar 

  20. Zhang F, Tang YM, Cao ZY, Jing WH, Wu ZL, Chen YZ (2012) Performance and theoretical study on corrosion inhibition of 2-(4-pyridyl)-benzimidazole for mild steel in hydrochloric acid. Corros Sci 61:1–9

    Article  CAS  Google Scholar 

  21. Umoren SA, Solomon MM (2017) Synergistic corrosion inhibition effect of metal cations and mixtures of organic compounds: a review. J Environ Chem Eng 5:246–273

    Article  CAS  Google Scholar 

  22. Umoren SA, Madhankumar A (2016) Effect of addition of CeO2 nanoparticles to pectin as inhibitor of X60 steel corrosion in HCl medium. J Mol Liq 224:72–82

    Article  CAS  Google Scholar 

  23. Zhu YH, Zhuang J, Zeng XG (2014) Mechanism of (NH4)2S2O8 to enhance the anti-corrosion performance of Mo Ce inhibitor on X80 steel in acid solution. Appl Surf Sci 313:31–40

    Article  CAS  Google Scholar 

  24. Zhu YH, Zhuang J, Yu YS, Zeng XG (2013) Research on anti-corrosion property of rare earth inhibitor for X70 steel. J Rare Earth 31:734–740

    Article  CAS  Google Scholar 

  25. Zhang DQ, Jin X, Xie B, Goun JH, Gao LX, Lee KY (2012) Corrosion inhibition of ammonium molybdate for AA6061 alloy in NaCl solution and its synergistic effect with calcium gluconate. Surf Interface Anal 44:78–83

    Article  CAS  Google Scholar 

  26. Sherif EM, Almajid A, Latif FH, Junaedi H (2011) Effects of graphite on the corrosion behavior of -graphite composite in sodium chloride solutions. Int J Electrochem Sci 6:1085–1099

    CAS  Google Scholar 

  27. Liu J, Wang DP, Gao LX, Zhang DQ (2016) Synergism between cerium nitrate and sodium dodecylbenzenesulfonate on corrosion of AA5052 aluminum alloy in 3wt.% NaCl solution. Appl Surf Sci 389:369–377

    Article  CAS  Google Scholar 

  28. Chandler WD, Johnson KE (1999) Thermodynamic calculations for reactions involving hydrogen halide polymers, ions, and Lewis acid adducts. 3. Systems constituted from Al3+, H+, and Cl. Inorg Chem 38:2050–2056

    Article  CAS  PubMed  Google Scholar 

  29. Ashassi Sorkhabi H, Ghasemi Z, Seifzadeh D (2005) The inhibition effect of some amino acids towards the corrosion of in 1 M HCl+1 M H2SO4 solution. Appl Surf Sci 249:408–418

    Article  CAS  Google Scholar 

  30. Zapata Loria A, Pech Canul M (2014) Corrosion inhibition of in 0.1 M HCL solution by glutamic acid. Chem Eng Commun 201:855–869

    Article  CAS  Google Scholar 

  31. Van Soestbergen M, Erich S, Huinink H, Adan O (2013) Inhibition of pH fronts in corrosion cells due to the formation of cerium hydroxide. Electrochim Acta 110:491–500

    Article  CAS  Google Scholar 

  32. Chauhan L, Gunasekaran G (2007) Corrosion inhibition of mild steel by plant extract in dilute HCl medium. Corros Sci 49:1143–1161

    Article  CAS  Google Scholar 

  33. Zhang DQ, Cai QR, Gao LX, Lee KY (2008) Effect of serine, threonine and glutamic acid on the corrosion of copper in aerated hydrochloric acid solution. Corros Sci 50:3615–3621

    Article  CAS  Google Scholar 

  34. Olejniczak Z, Leczka M, Cholewa Kowalska K, Wojtach K, Rokita M, Mozgawa W (2005) 29 Si MAS NMR and FTIR study of inorganic–organic hybrid gels. J Mol Struct 744:465–471

    Article  CAS  Google Scholar 

  35. Ashassi Sorkhabi H, Shaabani B, Seifzadeh D (2005) Effect of some pyrimidinic Shciff bases on the corrosion of mild steel in hydrochloric acid solution. Electrochim Acta 50:3446–3452

    Article  CAS  Google Scholar 

  36. Ehsani A, Nasrollahzadeh M, Mahjani MG, Moshrefi R, Mostaanzadeh H (2014) Electrochemical and quantum chemical investigation of inhibitory of 1, 4-Ph (OX)2 (Ts) 2 on corrosion of 1005 alloy in acidic medium. J Ind Eng Chem 20:4363–4370

    Article  CAS  Google Scholar 

  37. Gece G (2008) The use of quantum chemical methods in corrosion inhibitor studies. Corros Sci 50:2981–2992

    Article  CAS  Google Scholar 

  38. Verma C, Singh A, Pallikonda G, Chakravarty M, Quraishi MA, Bahadur I, Ebenso EE (2015) Aryl sulfonamidomethylphosphonates as new class of green corrosion inhibitors for mild steel in 1 M HCl: electrochemical, surface and quantum chemical investigation. J Mol Liq 209:306–319

    Article  CAS  Google Scholar 

  39. Khaled K, Amin MA (2009) Electrochemical and molecular dynamics simulation studies on the corrosion inhibition of in molar hydrochloric acid using some imidazole derivatives. J Appl Electrochem 39:2553–2568

    Article  CAS  Google Scholar 

  40. Khaled K, Amin MA (2009) Corrosion monitoring of mild steel in sulphuric acid solutions in presence of some thiazole derivatives—molecular dynamics, chemical and electrochemical studies. Corros Sci 51:1964–1975

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by NSFC project (21776172). We are grateful to the grant from the Science and Technology Commission of Shanghai Municipality (18DZ2204400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Quan Zhang.

Additional information

Highlights

• Glutamic acid is used for the corrosion prevention of AA5052 alloy.

• Synergism exists between Glu and Ce3+ ions.

• Synergistic mechanism is discussed by quantum chemistry calculation and molecular dynamic simulation.

• The combination of glutamic acid and cerium nitrate forms complex films to retard the cathodic corrosion processes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Yang, H.X., Wang, Y.Z. et al. Synergistic effect between glutamic acid and rare earth cerium (III) as corrosion inhibitors on AA5052 aluminum alloy in neutral chloride medium. Ionics 25, 1395–1406 (2019). https://doi.org/10.1007/s11581-018-2605-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2605-4

Keywords

Navigation