Skip to main content

Advertisement

Log in

L-cystine additive in the negative electrolyte of vanadium redox flow battery for improving electrochemical performance

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

L-cystine (LC) was employed as an additive to inhibit crystallization of V(II) or V(III) specie in the negative electrolyte and extend the practical application of vanadium redox flow battery (VRFB) at below-ambient temperatures. UV–Vis spectrometry showed LC has no effect on the absorption in the range of 300–800 nm. Crossover testing indicated that LC can permeate from negative side to positive side across the membrane Nafion 117. Static thermal stability testing showed LC can significantly inhibit precipitation of V(II)~V(IV) ions or V(V) in 1.8 M vanadium electrolyte with 3.0 M H2SO4 at 5 or 50 °C. It is found that 2–4 wt% LC in vanadium electrolytes can lower viscosity compared to the blank electrolyte. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) show V(III) electrolyte with 2 wt% LC exhibits superior electrochemical activity and diffusion coefficient, compared with the pristine electrolyte. VRFB single-cell tests operating at 5 and 50 °C were investigated. LC can inhibit the capacity decay and voltage efficiency loss at below-ambient temperatures. VRFB with LC obtains better performance of higher capacity retention (93.14 vs. 92.21%) and energy efficiency (73.36 vs. 68.66%) than the pristine at 5 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Park SM, Kim H (2015) Hybrid membranes with low permeability for vanadium redox flow batteries using in situ sol-gel process. Korean J Chem Eng 32(12):2434–2442

    Article  CAS  Google Scholar 

  2. He Z, Jiang Y, Zhu J, Li Y, Jiang Z, Zhou H, Meng W, Wang L, Dai L (2018) Boosting the performance of LiTi 2 (PO 4) 3/C anode for aqueous lithium ion battery by Sn doping on Ti sites. J Alloy Compd 731:32–38

    Article  CAS  Google Scholar 

  3. He Z, Jiang Y, Li Y, Zhu J, Zhou H, Meng W, Wang L, Dai L (2018) Carbon layer-exfoliated, wettability-enhanced, SO 3 H-functionalized carbon paper: a superior positive electrode for vanadium redox flow battery. Carbon 127:297–304

    Article  CAS  Google Scholar 

  4. Leung P, Li X, Ponce de Leon C, Berlouis L, CTJ L, Walsh FC (2012) RSC Adv 2(27):10125

    Article  CAS  Google Scholar 

  5. Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19(3):291–312

    Article  CAS  Google Scholar 

  6. Huang KL, Li XG, Liu SQ, Tan N, Chen LQ (2008) Research progress of vanadium redox flow battery for energy storage in China. Renew Energ 33(2):186–192

    Article  CAS  Google Scholar 

  7. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

    Article  CAS  PubMed  Google Scholar 

  8. Ponce de Leona C, Frias-Ferrer A, Gonzalez-Garciab J, Szantoc DA, Walsh FC (2006) J Power Sources 160(1):716

    Article  CAS  Google Scholar 

  9. Li X, Zhang H, Mai Z, Zhang H, Vankelecom I (2011) Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ Sci 4:1147

    Article  CAS  Google Scholar 

  10. Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA (1986) New all-vanadium redox flow cell. J Electrochem Soc 133(5):1057

    Article  CAS  Google Scholar 

  11. Skyllas-Kazacos M, Grossmith F (1987) Efficient vanadium redox flow cell. J Electrochem Soc 134(12):2950

    Article  CAS  Google Scholar 

  12. Ulaganathan M, Aravindan V, Yan Q, Madhavi S, Skyllas-Kazacos M, Lim TM (2016) Recent advancements in all-vanadium redox flow batteries. Adv Mater Interface 3(1):1500309

  13. Kazacos M, Cheng M, Skyllas-Kazacos M (1990) Vanadium redox cell electrolyte optimization studies. J Appl Electrochem 20(3):463–467

    Article  CAS  Google Scholar 

  14. Skyllas-Kazacos M, Kazacos G, Poon G, Verseema H (2010) Recent advances with UNSW vanadium-based redox flow batteries. Int J Energ Res 34(2):182–189

    Article  CAS  Google Scholar 

  15. Skyllas-Kazacos M, Kasherman D, Hong DR, Kazacos M (1991) Characteristics and performance of 1 kW UNSW vanadium redox battery. J Power Sources 35(4):399–404

    Article  CAS  Google Scholar 

  16. Skyllas-Kazacos M, Menictas C, Kazacos M (1996) Thermal Stability of concentrated V(V) electrolytes in the vanadium redox cell. J Electrochem Soc 143(4):L86

    Article  CAS  Google Scholar 

  17. Zhang J, Li L, Nie Z, Chen B, Vijayakumar M, Kim S, Wang W, Schwenzer B, Liu J, Yang Z (2011) Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries. J Appl Electrochem 41(10):1215–1221

    Article  CAS  Google Scholar 

  18. Wen Y, Xu Y, Cheng J, Cao G, Yang Y (2013) Investigation on the stability of electrolyte in vanadium flow batteries. Electrochim Acta 96:268–273

    Article  CAS  Google Scholar 

  19. Vijayakumar M, Wang W, Nie Z, Sprenkle V, Hu J (2013) Elucidating the higher stability of vanadium(V) cations in mixed acid based redox flow battery electrolytes. J Power Sources 241:173–177

    Article  CAS  Google Scholar 

  20. Li L, Kim S, Wang W, Vijayakumar M, Nie Z, Chen B, Zhang J, Xia G, Hu J, Graff G, Liu J, Yang Z (2011) A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv Energ Mater 1(3):394–400

    Article  CAS  Google Scholar 

  21. Peng S, Wang N, Wu XJ, Liu S, Fang D, Yn L, Huang K1 (2012) Int J Electrochem Sci 7:643

    CAS  Google Scholar 

  22. Skyllas-Kazacos M, Kazacos M (2000) US Patent 6,562,514

  23. Michael K, Maria Skyllas K (2002) US Patent 7:078,123

    Google Scholar 

  24. Li S, Huang K, Liu S, Fang D, Wu X, Lu D, Wu T (2011) Effect of organic additives on positive electrolyte for vanadium redox battery. Electrochim Acta 56(16):5483–5487

    Article  CAS  Google Scholar 

  25. Liang X, Peng S, Lei Y, Gao C, Wang N, Liu S, Fang D (2013) Effect of l-glutamic acid on the positive electrolyte for all-vanadium redox flow battery. Electrochim Acta 95:80–86

  26. Chang F, Hu C, Liu X, Liu L, Zhang J (2012) Coulter dispersant as positive electrolyte additive for the vanadium redox flow battery. Electrochim Acta 60:334–338

  27. Mousa A, Skyllas-Kazacos M (2015) Effect of additives on the low-temperature stability of vanadium redox flow battery negative half-cell electrolyte. ChemElectroChem 2(11):1742–1751

    Article  CAS  Google Scholar 

  28. Liu J, Liu S, He Z, Han H, Chen Y (2014) Effects of organic additives with oxygen- and nitrogen-containing functional groups on the negative electrolyte of vanadium redox flow battery. Electrochim Acta 130:314–321

    Article  CAS  Google Scholar 

  29. Hyeon DH, Chun JH, Lee CH, Jung HC, Kim SH (2015) Composite membranes based on sulfonated poly(ether ether ketone) and SiO2 for a vanadium redox flow battery. Korean J Chem Eng 32(8):1554–1563

    Article  CAS  Google Scholar 

  30. Wang N, Peng S, Lu D, Liu S, Liu Y, Huang K (2012) Nafion/TiO2 hybrid membrane fabricated via hydrothermal method for vanadium redox battery. J Solid State Electr 16(4):1577–1584

    Article  CAS  Google Scholar 

  31. Vijayakumar M, Burton SD, Huang C, Li L, Yang Z, Graff GL, Liu J, Hu J, Skyllas-Kazacos M (2010) Nuclear magnetic resonance studies on vanadium(IV) electrolyte solutions for vanadium redox flow battery. J Power Sources 195(22):7709–7717

    Article  CAS  Google Scholar 

  32. Wei G, Liu J, Zhao H, Yan C (2013) Electrospun carbon nanofibres as electrode materials toward VO2+/VO2+ redox couple for vanadium flow battery. J Power Sources 241:709–717

    Article  CAS  Google Scholar 

  33. Gao C, Wang N, Peng S, Liu S, Lei Y, Liang X, Zeng S, Zi H (2013) Influence of Fenton’s reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery. Electrochim Acta 88(0):193–202

    Article  CAS  Google Scholar 

  34. Wei G, Jia C, Liu J, Yan C (2012) Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application. J Power Sources 220:185–192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Scientific Research Fund of Hunan Provincial Education Department (17K026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanfang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Zhou, W. & Zhang, F. L-cystine additive in the negative electrolyte of vanadium redox flow battery for improving electrochemical performance. Ionics 25, 221–229 (2019). https://doi.org/10.1007/s11581-018-2593-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2593-4

Keywords

Navigation