Skip to main content
Log in

Effect of organophosphorus compound additives for thermal stability on the positive electrolyte of a vanadium redox flow battery

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

3-Aminopropylphosphonic acid (3APPA) and sodium 3-phosphonopropionate (3PPA-Na) are investigated as organophosphorus compound additives in a positive electrolyte of a vanadium redox flow battery (VRFB) to improve its thermal stability. The precipitation-inhibiting effects of 2 M vanadium electrolytes, including the above additives, are studied by UV–Vis spectroscopy, Raman spectrophotometry, cyclic voltammetry (CV), and charge–discharge cycling test in the redox flow battery. The UV–Vis spectroscopy and Raman spectrophotometry show that no new substances formed in both the V(IV) and V(V) electrolytes with 3APPA and 3PPA-Na additives. Cyclic voltammetry (CV) shows the electrochemical activity and reversibility of the electrolytes with and without the additives. In the flow cell, the discharge capacity retention values in the positive electrolyte after 100 cycles at 45 °C are 56.7, 64.7, and 48.4% in 3PPA-Na, 3APPA, and without the additives, respectively. These results indicate that the 3APPA additive increases the discharge capacity retention to more than 16% compared to the electrolyte without the additive due to the retardation of precipitation at the high temperature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Halls JE, Hawthornthwaite A, Hepworth RJ et al (2013) Energy Environ Sci 6:1026

    Article  CAS  Google Scholar 

  2. Leung P, Li X, Ponce de Leon C et al (2012) RSC Adv 2:10125

    Article  CAS  Google Scholar 

  3. Ding C, Zhang H, Li X et al (2013) J Phys Chem Lett 4:1281

    Article  CAS  PubMed  Google Scholar 

  4. Park S-K, Shim J, Yang JH et al (2014) Electrochim Acta 121:321

    Article  CAS  Google Scholar 

  5. Skyllas-Kazacos M (1989) All-vanadium redox battery and additives. Patent: WO 89/05526: 15 June 1989, WO 1989005526A1

  6. Rahman F, Skyllas-Kazacos M (1998) J Power Sources 72:105

    Article  CAS  Google Scholar 

  7. Wang G, Chen J, Wang X et al (2014) J Energy Chem 23:73

    Article  CAS  Google Scholar 

  8. Vijayakumar M, Li L, Graff G et al (2011) J Power Sources 196:3669

    Article  CAS  Google Scholar 

  9. Rahman F, Skyllas-Kazacos M (2009) J Power Sources 189:1212

    Article  CAS  Google Scholar 

  10. Kazacos M, Cheng M, Skyllas-Kazacos M (1990) J Appl Electrochem 20:463

    Article  CAS  Google Scholar 

  11. Madic C, Begun G, Hahn R et al (1984) Inorg Chem 23:469

    Article  CAS  Google Scholar 

  12. Kazacos MS, Kazacos M (2000) Stabilised electrolyte solutions, methods of preparation thereof and redox cells and batteries containing stabilised electrolyte solutions. Patent US6143443A

  13. Kazacos MS, Kazacos M (2000) Stabilised electrolyte solutions, methods of preparation thereof and redox cells and batteries containing stabilised electrolyte solutions. Patent EP0729648A1

  14. Kazacos MS, Kazacos M (2003) Stabilized vanadium electrolyte solutions for all-vanadium redox cells and batteries. Patent US6562514B1

  15. Kazacos M, Kazacos MS (2002) High energy density vanadium electrolyte solutions, methods of preparation thereof and all-vanadium redox cells and batteries containing high energy vanadium electrolyte solutions. Patent US6468688B2

  16. Li S, Huang K, Liu S et al (2011) Electrochim Acta 56:5483

    Article  CAS  Google Scholar 

  17. Liang X, Peng S, Lei Y et al (2013) Electrochim Acta 95:80

    Article  CAS  Google Scholar 

  18. Chang F, Hu C, Liu X et al (2012) Electrochim Acta 60:334

    Article  CAS  Google Scholar 

  19. Zhang J, Li L, Nie Z et al (2011) J Appl Electrochem 41:1215

    Article  CAS  Google Scholar 

  20. Gresser MJ, Tracey AS, Parkinson KM (1986) J Am Chem Soc 108:6229

    Article  CAS  Google Scholar 

  21. Skyllas-Kazacos M, Peng C, Cheng M (1999) Electrochem Solid-State Lett 2:121

    Article  CAS  Google Scholar 

  22. Li L, Kim S, Wang W et al (2011) Adv Energy Mater 1:394

    Article  CAS  Google Scholar 

  23. Nadeem K, Asem M, Maria SK (2016) ChemElectroChem 3:276

    Article  CAS  Google Scholar 

  24. Yeon S-H, So JY, Yun JH et al (2017) J Electrochem Energy Convers Storage 14:041007

    Article  Google Scholar 

  25. Roe S, Menictas C, Skyllas-Kazacos M (2016) J Electrochem Soc 163:A5023

    Article  CAS  Google Scholar 

  26. Choi NH, Kwon S-k, Kim H (2013) J Electrochem Soc 160:A973

    Article  CAS  Google Scholar 

  27. Kausar N, Howe R, Skyllas-Kazacos M (2001) J Appl Electrochem 31:1327

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korean government Ministry of Trade, Industry & Energy (MOTIE, No. 20142010102930).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Hwa Yeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, CS., So, JY., Shin, KH. et al. Effect of organophosphorus compound additives for thermal stability on the positive electrolyte of a vanadium redox flow battery. J Appl Electrochem 48, 1019–1030 (2018). https://doi.org/10.1007/s10800-018-1227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1227-x

Keywords

Navigation