Skip to main content
Log in

Synthesis and characterization of pectin-based biopolymer electrolyte for electrochemical applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

An attempt has been made to synthesize a polymer electrolyte based on biopolymer pectin with ammonium thiocyanate (NH4SCN) salt by solution casting technique. Amorphous/crystalline nature of the polymer electrolyte has been studied by X-ray diffraction technique. The complexation between polymer and salt has been confirmed by Fourier transform infrared spectroscopy. A shift in glass transition temperature of the pectin: NH4SCN electrolytes have been observed from the differential scanning calorimetry thermograms. Ionic conductivity of the electrolytes was measured through impedance spectroscopic technique. The frequency and temperature dependence of ionic conductivity has been studied. The highest conductivity of 1.5 × 10−3 S cm−1 was observed for 40 mol% pectin: 60 mol% NH4SCN sample. Transference number measurement was carried out to confirm the nature of the charge transport species in the polymer electrolyte. Electrochemical stability of the highest conducting sample was studied by linear sweep voltammetry (LSV). The value is found to be 3.69 V. Using highest proton-conducting membrane, a proton battery has been constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10

Similar content being viewed by others

References

  1. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41:223001 (18pp)

    Article  CAS  Google Scholar 

  2. Pratap R, Singh B, Chandra S (2006) Polymeric rechargeable solid state proton battery. J Power Sources 161:702–706

    Article  CAS  Google Scholar 

  3. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energ 35:9349–9384

    Article  CAS  Google Scholar 

  4. Gao H, Lian K (2011) High rate all-solid electrochemical capacitors using proton conducting polymer electrolytes. J Power Sources 196:8855–8857

    Article  CAS  Google Scholar 

  5. Thakur VK, Ding G, Ma J, Lee PS, Xuehong L (2012) Hybrid materials and polymer electrolytes for electrochromic device applications. Adv Mater 24:4071–4096

    Article  CAS  PubMed  Google Scholar 

  6. Quartarone E, Mustarelli P, Magistris A (1998) PEO-based composite polymer electrolytes. Solid State Ionics 110:1–14

    Article  CAS  Google Scholar 

  7. Tipton AL, Lonergan MC, Ratner MA, Shriver DF, Wong TTY, Han K (1994) Conductivity and dielectric constant of PPO and PPO-based solid electrolytes from Dc to 6 GHz. J Phys Chem 98:4148–4154

    Article  CAS  Google Scholar 

  8. Hema M, Selvasekarapandian S, Arunkumar D, Sakunthala A, Nithya H (2009) FTIR, XRD and ac impedance spectroscopic study on PVA based polymer electrolyte doped with NH4X (X = Cl, Br, I). J Non-Cryst Solids 355:84–90

    Article  CAS  Google Scholar 

  9. Vijaya N, Selvasekarapandian S, Hirankumar G, Karthikeyan S, Nithya V, Ramya CS, Prabu M (2012) Structural, vibrational, thermal, and conductivity studies on proton-conducting polymer electrolyte based on poly (N-vinyl pyrrolidone). Ionics 18:91–99

    Article  CAS  Google Scholar 

  10. Nithya S, Selvasekarapandian S, Karthikeyan S, Inbavalli D, Sikkinthar S, Sanjeeviraja C (2014) AC impedance studies on proton-conducting PAN: NH4SCN polymer electrolytes. Ionics 20:1391–1398

    Article  CAS  Google Scholar 

  11. Chiellini E, Solaro R (1996) Biodegradable polymeric materials. Adv Mater 8(4):305–313

    Article  CAS  Google Scholar 

  12. Tan W, Majid SR, Khiar ASA, Arof AK (2006) Ionic conductivity of chitosan membranes and application for electrochemical devices. Polym Adv Technol 17:523–527

    Article  CAS  Google Scholar 

  13. Ahmad Khiar AS, Arof AK (2010) Conductivity studies of starch based polymer electrolytes. Ionics 16:123–129

    Article  CAS  Google Scholar 

  14. Johari NA, Kudin TIT, Ali AMM, Winie T, Yahya MZA (2009) Studies on cellulose acetate-based gel polymer electrolytes for proton batteries. Mater Res Innov 13(3):232–234

    Article  CAS  Google Scholar 

  15. Raphael E, Avellaneda CO, Manzolli B, Pawlicka A (2009) Agar-based films for application as polymer electrolytes. Electrochim Acta 55:1455–1459

    Article  CAS  Google Scholar 

  16. Mishra RK, Datt M, Banthia AK, Majeed ABA (2012) Development of novel pectin based membranes as proton conducting material. Int J Plast Technol 16(1):80–88

    Article  CAS  Google Scholar 

  17. Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S, Boopathi G, Aristatil G, Arun A, Madeswaran S (2016) Proton-conducting I-Carrageenan-based biopolymer electrolyte for fuel cell applications. Ionics 23:2775–2780. https://doi.org/10.1007/s11581-016-1901-0

    Article  CAS  Google Scholar 

  18. Mohamed SN, Johari NA, Ali AMM, Harun MK, Yahya MZA (2008) Electrochemical studies on epoxidised natural rubber-based gel polymer electrolytes for lithium–air cells. J Power Sources 183:351–354

    Article  CAS  Google Scholar 

  19. May CD (1990) Industrial pectins: sources, production and applications. Carbohydr Polym 12:79–99

    Article  CAS  Google Scholar 

  20. Mishra RK, Datt M, Pal K, Banthia AK (2008) Preparation and characterization of amidated pectin based hydrogels for drug delivery system. J Mater Sci Mater Med 19:2275–2280

    Article  CAS  PubMed  Google Scholar 

  21. Nimisha KV, Mohan A, Janardanan C (2016) Pectin–Tin(IV) molybdosilicate: an ecofriendly cationic exchanger and its potential for sorption of heavy metals from aqueous solutions. Resource-Efficient Technologies 2:S153–S164

    Article  Google Scholar 

  22. Assaf SM, Abul-Haija YM, Fares MM (2011) Versatile pectin grafted poly (N-isopropylacrylamide) modulated targeted drug release. J Macromol Sci, Pure Appl Chem 48:493–502

    Article  CAS  Google Scholar 

  23. Mishra RK, Banthia AK, Majeed ABA (2012) Pectin based formulations for biomedical applications: a review. Asian J Pharm Clin Res 5(4):1–7

    CAS  Google Scholar 

  24. Mishra RK, Anis A, Mondal S, Dutt M, Banthia AK (2009) Preparation and characterization of amidated pectin based polymer electrolyte membranes. Chin J Polym Sci 27(5):639–646

    Article  CAS  Google Scholar 

  25. Andrade JR, Raphael E, Pawlicka A (2009) Plasticized pectin based gel electrolytes. Electrochim Acta 54:6479–6483

    Article  CAS  Google Scholar 

  26. Vijaya N, Selvasekarapandian S, Sornalatha M, Sujithra KS, Monisha S (2016) Proton-conducting biopolymer electrolytes based on pectin doped with NH4X (X=Cl, Br). Ionics 23:2799–2808. https://doi.org/10.1007/s11581-016-1852-5

    Article  CAS  Google Scholar 

  27. Zulkefli FN, Navaratnam S, Ahmad AH (2016) Proton conducting biopolymer electrolytes based on starch incorporated with ammonium thiocyanate. Adv Mater Res 1112:275–278

    Article  Google Scholar 

  28. Shukur M F, Azmi M S, Zawawi S M M, Majid N A, Illias H A, Kadir M F Z (2013) Conductivity studies of biopolymer electrolytes based on chitosan incorporated with NH4Br. Phys Scr T157 014049: (5pp)

  29. Chung C, Lee M, Choe EK (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym 58:417–420

    Article  CAS  Google Scholar 

  30. Singthong J, Cui SW, Ningsanond S, Douglas Goff H (2004) Structural characterization, degree of esterification and some gelling properties of Krueo Ma Noy (Cissampelos pareira) pectin. Carbohydr Polym 58:391–400

    Article  CAS  Google Scholar 

  31. Zhang H, Xuan X, Wang J, Wamg H (2003) FT-IR investigation of ion association in PEO–MSCN (M=Na, K) polymer electrolytes. Solid State Ionics 164:73–79

    Article  CAS  Google Scholar 

  32. Leones R, Mbs B, Sentanin F, Cesarino I, Pawlicka A, Ass C,MmS (2014) Pectin-based polymer electrolytes with Ir (III) complexes. Mole Crys Liq Crys 604:117–125

  33. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer 37(8):1371–1376

    Article  CAS  Google Scholar 

  34. Kadir MFZ, Majid SR, Arof AK (2010) Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochim Acta 55:1475–1482

    Article  CAS  Google Scholar 

  35. Chaichi M, Hashemi M, Badii F, Mohammadi A (2017) Preparation and characterization of a novel bionanocompostie edible film based on pectin and crystalline nanocellulose. Carbohy Polym 157:167–175

    Article  CAS  Google Scholar 

  36. Premalatha M, Vijaya N, Selvasekarapandian S, Selvalakshmi S (2016) Characterization of blend polymer PVA-PVP complexed with ammonium thiocyanate. Ionics 22:1299–1310. https://doi.org/10.1007/s11581-016-1672-7

    Article  CAS  Google Scholar 

  37. Karthikeyan S, Sikkanthar S, Selvasekarapandian S, Arunkumar D, Nithya H, Kawamura J (2016) Structural, electrical and electrochemical properties of polyacrylonitrile-ammonium hexaflurophosphate polymer electrolyte system. J Polym Res 23:51–60

    Article  CAS  Google Scholar 

  38. Perumal P, Christopher Selvin P, Selvasekarapandian S (2018) Characterization of biopolymer pectin with lithium chloride and its applications to electrochemical devices. Ionics Doi/https://doi.org/10.1007/s11581-018-2507-5

  39. Ramesh S, Arof AK (2001) Ionic conductivity studies of plasticized poly (vinyl chloride) polymer electrolytes. Mater Sci Eng B 85:11–15

    Article  Google Scholar 

  40. Macdonald J R (1987) Impedance spectroscopy. Johnwiley & sons, Newyork. 12–23

  41. Prabu M, Selvasekarapandian S, Kulkarni AR, Hirankumar G, Sakunthala A (2010) Ionic conductivity studies on LiSmO2 by impedance spectroscopy. Ionics 16:317–321

    Article  CAS  Google Scholar 

  42. Boukamp BA (1986) Solid State Ionics 20: 301

  43. Premalatha M, Mathavan T, Selvasekarapandian S, Monisha S, Selvalakshmi S, Vinoth Pandi D (2017) Tamarind seed polysaccharide (TSP)-based Li-ion conducting membranes. Ionics 23:2677–2684. https://doi.org/10.1007/s11581-017-1989-x

    Article  CAS  Google Scholar 

  44. Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Premalatha M (2016) Preparation and characterization of cellulose acetate and lithium nitrate for advanced electrochemical devices. Ionics 23:2697–2706. https://doi.org/10.1007/s11581-016-1886-8

    Article  CAS  Google Scholar 

  45. Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A,. Aristatilc G, Manic N, Premalatha M, Vinoth Pandi D (2016) Investigation of bio polymer electrolyte based on celluloseacetate-ammonium nitrate for potential use in electrochemical devices Carbohydrate Polymers 157: 38–47

  46. Jonscher AK (1977) The universal dielectric response. Nature 267:673–679

    Article  CAS  Google Scholar 

  47. Dutta P, Biswas S (2002) Characterization of plasticized solid polymer electrolyte by XRD and AC impedance methods. Mater Res Bull 37:193–200

    Article  CAS  Google Scholar 

  48. Amstrong RD, Dickinson T, Wills PM (1974) The A.C. impedance of powdered and sintered solid ionic conductors. J Electroanal Chem 53(3):389–405

    Article  Google Scholar 

  49. Hodge IM, Ingram MD, West AR (1976) Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J Electroanal Chem 74:125–143

    Article  CAS  Google Scholar 

  50. Adachi K, Urakawa O (2002) Dielectric study of concentration fluctuations in concentrated polymer solutions. J. Non-Cryst. Solids 307–310 & 667–670

  51. MacCallum JR, Vincent CA (1989) Polymer electrolyte review-2. Elsevier, London

    Google Scholar 

  52. Raja V, Sharma AK, Narasimha Rao VVR (2004) Impedance spectroscopic and dielectric analysis of PMMA-CO-P4VPNO polymer films. Mater Lett 58(26):3242–3247

    Article  CAS  Google Scholar 

  53. Schmidt-Rohr K, Kulik AS, Beckham HW, Ohlemacher A, Pawelzik U, Boeffel C, Spiess HW (1994) Molecular nature of the beta. Relaxation in poly (methyl methacrylate) investigated by multidimensional NMR. Macromolecules 27:4733–4745

    Article  CAS  Google Scholar 

  54. Cassu SN, Felisberti MI (1999) Poly (vinyl alcohol) and poly (vinylpyrrolidone) blends: 2. Study of relaxations by dynamic mechanical analysis. Polymer 40:4845–4851

    Article  CAS  Google Scholar 

  55. Manjuladevi R, Thamilselvan M, Selvasekarapandian S, Mangalam R, Premalatha M, Monisha S (2017) Mg-ion conducting blend polymer electrolyte based on poly(vinyl alcohol)- poly (acrylonitrile) with magnesium perchlorate. Solid State Ionics 308:90–100

    Article  CAS  Google Scholar 

  56. Wagner JB, Wagner C (1957) Electrical conductivity measurements on cuprous halides. J Chem Phys 26:1597–1601

    Article  CAS  Google Scholar 

  57. Winnie T, Arof AK (2006) Transport properties of hexanoyl chitosan-based gel electrolyte. Ionics 12:149–152

    Article  CAS  Google Scholar 

  58. Subba Reddy CV, Sharma AD, Narasimha Rao VVR (2003) Conductivity and discharge characteristics of polyblend (PVP+PVA+KIO3) electrolyte. J Power Sources 114:338–345

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvasekarapandian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthukrishnan, M., Shanthi, C., Selvasekarapandian, S. et al. Synthesis and characterization of pectin-based biopolymer electrolyte for electrochemical applications. Ionics 25, 203–214 (2019). https://doi.org/10.1007/s11581-018-2568-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2568-5

Keywords

Navigation