Skip to main content
Log in

Study on the optical properties and electrochromic applications of LTO/TaOx ion storage-transport composite structure films

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, the morphological and optical properties of LTO/TaOx composite structure films and electrochromic properties of “ITO/NiOx/LTO/TaOx/WOx/ITO” electrochromic devices (ECDs) based on LTO/TaOx composite structure films are reported. The composite films are deposited on the ITO substrate by reactive magnetron sputtering. The results of XRD, SEM, and AFM show that LTO film is amorphous and the performance of films prepared by sputtering power of 100 W for 5 h is the best. The optical transmittance of the multilayer structure is tested using an ultraviolet-visible spectrum and the refractive index dispersion is calculated using the relationship between the peaks in the spectrum based on equal inclination interference theory. Optical transmittance and refractive index dispersion are changed with the increase of magnetron sputtering power. Electrochromic tests show that all-solid-state ECDs based on composite films have 13 s coloring and 14 s fading response time, and the average optical modulation amplitude is 58%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tajima K, Yamada Y, Bao S, Okada M, Yoshimura K (2008) Solid electrolyte of tantalum oxide thin film deposited by reactive DC and RF magnetron sputtering for all-solid-state switchable mirror glass. Sol Energy Mater Sol Cells 92(2):120–125. https://doi.org/10.1016/j.solmat.2007.01.022

    Article  CAS  Google Scholar 

  2. Liu W, Zhang X, Liu J, Ma X, Zeng J, Liu P, Xu T (2017) Electrochromic properties of organic-inorganic composite materials. J Alloys Compd 718:379–385. https://doi.org/10.1016/j.jallcom.2017.05.222

    Article  CAS  Google Scholar 

  3. Usha N, Sivakumar R, Sanjeeviraja C, Kuroki Y (2015) Effect of substrate temperature on the properties of Nb2O5:MoO3 (90:10) thin films prepared by rf magnetron sputtering technique. J Alloys Compd 649:112–121. https://doi.org/10.1016/j.jallcom.2015.07.097

    Article  CAS  Google Scholar 

  4. Granqvist CG (2008) Oxide-based electrochromic materials and devices prepared by magnetron sputtering. In: Depla D, Mahieu S (eds) Reactive sputter deposition. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 485–495. https://doi.org/10.1007/978-3-540-76664-3_13

    Chapter  Google Scholar 

  5. Tajima K, Yamada Y, Bao S, Okada M, Yoshimura K (2008) Proton conductive tantalum oxide thin film deposited by reactive DC magnetron sputtering for all-solid-state switchable mirror. J Phys Conf Ser 100(8):082017. https://doi.org/10.1088/1742-6596/100/8/082017

    Article  CAS  Google Scholar 

  6. Tajima K, Yamada Y, Bao S, Okada M, Yoshimura K (2007) Durability of all-solid-state switchable mirror based on magnesium–nickel thin film. Electrochem Solid-State Lett 10(3):J52. https://doi.org/10.1149/1.2430568

    Article  CAS  Google Scholar 

  7. Poongodi S, Kumar PS, Mangalaraj D, Ponpandian N, Meena P, Masuda Y, Lee C (2017) Electrodeposition of WO 3 nanostructured thin films for electrochromic and H 2 S gas sensor applications. J Alloys Compd 719:71–81. https://doi.org/10.1016/j.jallcom.2017.05.122

    Article  CAS  Google Scholar 

  8. Gaikwad DK, Mali SS, Hong CK, Kadam AV (2016) Influence of disordered morphology on electrochromic stability of WO3/PPy. J Alloys Compd 669:240–245. https://doi.org/10.1016/j.jallcom.2016.01.226

    Article  CAS  Google Scholar 

  9. Wang S-C, Liu K-Y, Huang J-L (2011) Tantalum oxide film prepared by reactive magnetron sputtering deposition for all-solid-state electrochromic device. Thin Solid Films 520(5):1454–1459. https://doi.org/10.1016/j.tsf.2011.08.046

    Article  CAS  Google Scholar 

  10. Liu CC, Liu KI, Lin HT, Huang JL (2012) Magnetron sputtering of tantalum oxide thin electrolyte film for electrochromic applications. Key Eng Mater 512-515:1604–1608. https://doi.org/10.4028/www.scientific.net/KEM.512-515.1604

    Article  CAS  Google Scholar 

  11. Saito T, Ushio Y, Yamada M, Niwa T (1990) Properties of tantalum oxide thin film for solid electrolyte. Solid State Ionics 40:499–501. https://doi.org/10.1016/0167-2738(90)90389-9

    Article  Google Scholar 

  12. Wang SC, Liu KY, Huang JL (2011) Tantalum oxide film prepared by reactive magnetron sputtering deposition for all-solid-state electrochromic device. Thin Solid Films 520(5):1454–1459

    Article  CAS  Google Scholar 

  13. Wang M-C, Chen Y-C, Hsieh M-H, Li Y-C, Wang J-Y, Wu J-Y, Tsai W-F, Jan D-J (2016) The improvement of all-solid-state electrochromic devices fabricated with the reactive sputter and cathodic arc technology. AIP Adv 6(11):115009. https://doi.org/10.1063/1.4967363

    Article  CAS  Google Scholar 

  14. Wang M-C, Hsieh M-H, Chen Y-C, Wang J-Y (2016) All-solid-state electrochromic device integrated with near-IR blocking layer for image sensor and energy-saving glass application. Appl Phys Lett 109(12):123501. https://doi.org/10.1063/1.4962842

    Article  CAS  Google Scholar 

  15. Tajima K, Yamada Y, Bao S, Okada M, Yoshimura K (2009) Electrochemical evaluation of Ta2O5 thin film for all-solid-state switchable mirror glass. Solid State Ionics 180(6–8):654–658. https://doi.org/10.1016/j.ssi.2008.12.034

    Article  CAS  Google Scholar 

  16. Dong D, Wang W, Dong G, Zhang F, He Y, Yu H, Liu F, Wang M, Diao X (2016) Electrochromic properties and performance of NiO x films and their corresponding all-thin-film flexible devices preparedby reactive DC magnetron sputtering. Appl Surf Sci 383:49–56. https://doi.org/10.1016/j.apsusc.2016.04.154

    Article  CAS  Google Scholar 

  17. Du C, Tang Z, Wu J, Tang H, Zhang X (2014) A three volt lithium ion battery with LiCoPO4 and zero-strain Li4Ti5O12 as insertion material. Electrochim Acta 125:58–64. https://doi.org/10.1016/j.electacta.2014.01.093

    Article  CAS  Google Scholar 

  18. Pan H-L, Hu Y-S, Li H, Chen L-Q (2011) Significant effect of electron transfer between current collector and active material on high rate performance of Li4Ti5O12. Chinese Physics B 20(11):118202. https://doi.org/10.1088/1674-1056/20/11/118202

    Article  CAS  Google Scholar 

  19. Ohzuku T (1995) Zero-strain insertion material of li[Li1∕3Ti5∕3]O4 for rechargeable Lithium cells. J Electrochem Soc 142(5):1431. https://doi.org/10.1149/1.2048592

    Article  CAS  Google Scholar 

  20. Xie J, Harks P-PRML, Li D, Raijmakers LHJ, Notten PHL (2016) Planar and 3D deposition of Li4Ti5O12 thin film electrodes by MOCVD. Solid State Ionics 287:83–88. https://doi.org/10.1016/j.ssi.2016.02.004

    Article  CAS  Google Scholar 

  21. Li C-L, Zhang B, Fu Z-W (2006) Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation. Thin Solid Films 515(4):1886–1892. https://doi.org/10.1016/j.tsf.2006.07.026

    Article  CAS  Google Scholar 

  22. Tiwari KJ, Vinod V, Subrahmanyam A, Malar P (2017) Growth and characterization of chalcostibite CuSbSe2 thin films for photovoltaic application. Appl Surf Sci 418:216–224. https://doi.org/10.1016/j.apsusc.2017.01.279

    Article  CAS  Google Scholar 

  23. Mannequin C, Tsuruoka T, Hasegawa T, Aono M (2016) Identification and roles of nonstoichiometric oxygen in amorphous Ta2O5 thin films deposited by electron beam and sputtering processes. Appl Surf Sci 385:426–435. https://doi.org/10.1016/j.apsusc.2016.04.099

    Article  CAS  Google Scholar 

  24. Gao Z, Myung Y, Huang X, Kanjolia R, Park J, Mishra R, Banerjee P (2016) Doping mechanism in transparent, conducting tantalum doped ZnO films deposited using atomic layer deposition. Adv Mater Interfaces 3(21):1600496. https://doi.org/10.1002/admi.201600496

    Article  CAS  Google Scholar 

  25. Donaldson OK, Hattar K, Trelewicz JR, Johnson EIC (2016) Metastable tantalum oxide formation during the devitrification of amorphous tantalum thin films. J Am Ceram Soc 99(11):3775–3783. https://doi.org/10.1111/jace.14384

    Article  CAS  Google Scholar 

  26. Hu YM, Li JY, Chen NY, Chen CY, Han TC, Yu CC (2017) Effect of sputtering power on crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO transparent conducting thin films for optoelectronic devices. J Appl Phys 121(8):085302. https://doi.org/10.1063/1.4977104

    Article  CAS  Google Scholar 

  27. Sun G, Cao X, Gao X, Long S, Liang M, Jin P (2016) Structure and enhanced thermochromic performance of low-temperature fabricated VO2/V2O3 thin film. Appl Phys Lett 109(14):143903. https://doi.org/10.1063/1.4964432

    Article  CAS  Google Scholar 

  28. Özen S, Şenay V, Pat S, Korkmaz Ş (2016) Optical, morphological properties and surface energy of the transparent Li4Ti5O12(LTO) thin film as anode material for secondary type batteries. J Phys D Appl Phys 49(10):105303. https://doi.org/10.1088/0022-3727/49/10/105303

    Article  CAS  Google Scholar 

  29. Kalita DJ, Lee SH, Lee KS, Ko DH, Yoon YS (2012) Ionic conductivity properties of amorphous li–La–Zr–O solid electrolyte for thin film batteries. Solid State Ionics 229:14–19. https://doi.org/10.1016/j.ssi.2012.09.011

    Article  CAS  Google Scholar 

  30. Oudenhoven JFM, Baggetto L, Notten PHL (2011) All-solid-state Lithium-ion microbatteries: a review of various three-dimensional concepts. Adv Energy Mater 1(1):10–33. https://doi.org/10.1002/aenm.201000002

    Article  CAS  Google Scholar 

  31. Huang ZY, Chen M, Pan SR, Chen DH (2010) Effect of surface microstructure and wettability on plasma protein adsorption to ZnO thin films prepared at different RF powers. Biomed Mater 5(5):054116. https://doi.org/10.1088/1748-6041/5/5/054116

    Article  CAS  PubMed  Google Scholar 

  32. Muchuweni E, Sathiaraj TS, Nyakotyo H (2016) Physical properties of gallium and aluminium co-doped zinc oxide thin films deposited at different radio frequency magnetron sputtering power. Ceram Int 42(15):17706–17710. https://doi.org/10.1016/j.ceramint.2016.08.091

    Article  CAS  Google Scholar 

  33. Kim DK, Kim HB (2015) Properties of ZnO:Ga thin films deposited by RF magnetron sputtering under various RF power. Applied Science and Convergence Technology 24(6):242–244. https://doi.org/10.5757/asct.2015.24.6.242

    Article  Google Scholar 

  34. Duygulu NE (2015) Effect of r.F. Power variation on gallium doped zinc oxide thin films. Vacuum 120:19–27. https://doi.org/10.1016/j.vacuum.2015.05.036

    Article  CAS  Google Scholar 

  35. Emam-Ismail M, Shaaban ER, El-Hagary M (2016) A new method for calculating the refractive index of semiconductor thin films retrieved from their transmission spectra. J Alloys Compd 663:20–29. https://doi.org/10.1016/j.jallcom.2015.12.071

    Article  CAS  Google Scholar 

  36. Usha KS, Sivakumar R, Sanjeeviraja C (2013) Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique. J Appl Phys 114(12):123501. https://doi.org/10.1063/1.4821966

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51602045), the Fundamental Research Funds for the Central Universities (Grant No. N162304013), and the Natural Science Foundation of Hebei Province (Grant No. E2017501082), Natural Science Foundation of Liaoning Province (No.20170540325).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Wang.

Electronic supplementary material

ESM 1

(PDF 709 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Wang, X., Li, M. et al. Study on the optical properties and electrochromic applications of LTO/TaOx ion storage-transport composite structure films. Ionics 24, 3995–4003 (2018). https://doi.org/10.1007/s11581-018-2557-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2557-8

Keywords

Navigation