Skip to main content

Advertisement

Log in

Compact structured silicon/carbon composites as high-performance anodes for lithium ion batteries

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Compact-structured silicon/carbon composites consisting of silicon, graphite, and coal tar pitch pyrolysis carbon are prepared via two heating procedures after liquid solidification. The first heating procedure plays a key role in the formation of compact-structured silicon/carbon composites, in which the coal tar pitch has a good fluidity at 180 °C above the softening temperature, and it is easy to form a uniform coating on the surface of materials. At the same time, the fluidic coal tar pitch could also fill the voids between particles to form compact-structured silicon/carbon composites. As-prepared silicon/carbon composites exhibit moderate reversible capacity of 602.4 mAh g−1, high initial charge-discharge efficiency of 82.3%, and good cycling stability with the capacity retention of 93.4% at 0.1 A g−1 after 50 cycles. It is noteworthy that the synthetic method is scalable which is suitable for mass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    Article  CAS  PubMed  Google Scholar 

  2. Wang T, Zhang L, Li C, Yang W, Song T, Tang C, Meng Y, Dai S, Wang H, Chai L (2015) Synthesis of core-shell magnetic Fe3O4@poly(m-phenylenediamine) particles for chromium reduction and adsorption. Environ Sci Technol 49(9):5654–5662

    Article  CAS  PubMed  Google Scholar 

  3. Yang Z, Guo H, Li X, Wang Z, Yan Z, Wang Y (2016) Natural sisal fibers derived hierarchical porous activated carbon as capacitive material in lithium ion capacitor. J Power Sources 329:339–346

    Article  CAS  Google Scholar 

  4. Chai LY, Wang QW, Li QZ, Yang ZH, Wang YY (2010) Enhanced removal of Hg(II) from acidic aqueous solution using thiol-functionalized biomass. Water Sci Technol 62(9):2157–2166

    Article  CAS  PubMed  Google Scholar 

  5. Li T, Li X, Wang Z, Guo H (2017) A short process for the efficient utilization of transition-metal chlorides in lithium-ion batteries: a case of Ni0.8Co0.1Mn0.1O1.1 and LiNi0.8Co0.1Mn0.1O2. J Power Sources 342:495–503

    Article  CAS  Google Scholar 

  6. Xu F, Xu J, Xu H, Lu Y, Yang H, Tang Z, Lu Z, Fu R, Wu D (2017) Fabrication of novel powdery carbon aerogels with high surface areas for superior energy storage. Energy Storage Mater 7:8–16

    Article  Google Scholar 

  7. Wang J, Zhang G, Liu Z, Li H, Liu Y, Wang Z, Li X, Shih K, Mai L (2018) Li3V(MoO4)3 as a novel electrode material with good lithium storage properties and improved initial coulombic efficiency. Nano Energy 44:272–278

    Article  CAS  Google Scholar 

  8. Tan L, Li X, Wang Z, Guo H, Wang J (2018) Lightweight reduced graphene oxide@ MoS2 interlayer as polysulfide barrier for high-performance lithium-sulfur batteries. ACS Appl Mater Interfaces 10(4):3707–3713

    Article  CAS  PubMed  Google Scholar 

  9. Yan Z, Hu Q, Yan G, Li H, Shih K, Yang Z, Li X, Wang Z, Wang J (2017) Co3O4/Co nanoparticles enclosed graphitic carbon as anode material for high performance Li-ion batteries. Chem Eng J 321:495–501

    Article  CAS  Google Scholar 

  10. Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4(8):2682–2699

    Article  CAS  Google Scholar 

  11. Yan G, Li X, Wang Z, Guo H, Xiong X (2014) Beneficial effects of 1-propylphosphonic acid cyclic anhydride as an electrolyte additive on the electrochemical properties of LiNi0.5Mn1.5O4 cathode material. J Power Sources 263(5):231–238

    Article  CAS  Google Scholar 

  12. Chen S, Shen L, van Aken PA, Maier J, Yu Y (2017) Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv Mater 29(21):1605650

    Article  Google Scholar 

  13. Zheng J, Han Y, Sun D, Zhang B, Cairns EJ (2017) In situ-formed LiVOPO4@ V2O5 core-shell nanospheres as a cathode material for lithium-ion cells. Energy Storage Mater 7:48–55

    Article  Google Scholar 

  14. Yang Z, Guo H, Li X, Wang Z, Wang J, Wang Y, Yan Z, Zhang D (2017) Graphitic carbon balanced between high plateau capacity and high rate capability for lithium ion capacitors. J Mater Chem A 5(29):15302–15309

    Article  CAS  Google Scholar 

  15. Hou H, Banks CE, Jing M, Zhang Y, Ji X (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27(47):7861–7866

    Article  CAS  PubMed  Google Scholar 

  16. Liu N, Lu Z, Zhao J, Mcdowell MT, Lee HW, Zhao W, Cui Y (2014) A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol 9(3):187–192

    Article  CAS  PubMed  Google Scholar 

  17. Hui W, Yi C (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7(5):414–429

    Article  Google Scholar 

  18. Chan CK, Peng H, Liu G, Mcilwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):187–191

    Article  Google Scholar 

  19. Davenas J, Dkhil SB, Cornu D, Rybak A (2012) Silicon nanowire/P3HT hybrid solar cells: effect of the electron localization at wire nanodiameters. Energy Procedia 31(31):136–143

    Article  CAS  Google Scholar 

  20. Wen Z, Lu G, Mao S, Kim H, Cui S, Yu K, Huang X, Hurley PT, Mao O, Chen J (2013) Silicon nanotube anode for lithium-ion batteries. Electrochem Commun 29(10):67–70

    Article  CAS  Google Scholar 

  21. Menon M, Andriotis AN, Froudakis G (2014) Structure and stability of Ni-encapsulated Si nanotube. Nano Lett 2(4):301–304

    Article  Google Scholar 

  22. Hong SC, Lee JG, Lee HY, Sang WK, Chong RP (2011) Effects of surrounding confinements of Si nanoparticles on Si-based anode performance for lithium ion batteries. Electrochim Acta 56(2):790–796

    Google Scholar 

  23. Zhang YQ, Xia XH, Wang XL, Mai YJ, Shi SJ, Tang YY, Gu CG, Tu JP (2012) Three-dimensional porous nano-Ni supported silicon composite film for high-performance lithium-ion batteries. J Power Sources 213(9):106–111

    Article  CAS  Google Scholar 

  24. Zhou Y, Guo H, Yong Y, Wang Z, Li X, Zhou R (2017) Introducing reduced graphene oxide to improve the electrochemical performance of silicon-based materials encapsulated by carbonized polydopamine layer for lithium ion batteries. Mater Lett 195:164–167

    Article  CAS  Google Scholar 

  25. Zhou Y, Guo H, Yang Y, Wang Z, Li X, Zhou R, Peng W (2016) Facile synthesis of silicon/carbon nanospheres composite anode materials for lithium-ion batteries. Mater Lett 168(20):138–142

    Article  CAS  Google Scholar 

  26. Yong NJ, Kim Y, Kim JS, Song JH, Kim KJ, Chong YK, Dong JL, Park CW, Kim YJ (2010) Si–graphite composites as anode materials for lithium secondary batteries. J Power Sources 195(18):6031–6036

    Article  Google Scholar 

  27. Luo F, Liu B, Zheng J, Geng C, Zhong K, Li H, Huang X, Chen L (2015) Review—nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries. J Electrochem Soc 162(14):A2509–A2528

    Article  CAS  Google Scholar 

  28. Su M, Wang Z, Guo H, Li X, Huang S, Gan L (2013) Silicon, flake graphite and phenolic resin-pyrolyzed carbon based Si/C composites as anode material for lithium-ion batteries. Adv Powder Technol 24(6):921–925

    Article  CAS  Google Scholar 

  29. Ng SH, Wang J, Konstantinov K, Wexler D, Chew SY, Guo ZP, Liu HK (2007) Spray-pyrolyzed silicon/disordered carbon nanocomposites for lithium-ion battery anodes. J Power Sources 174(2):823–827

    Article  CAS  Google Scholar 

  30. Yang Y, Wang Z, Yan G, Guo H, Wang J, Li X, Zhou Y, Zhou R (2017) Pitch carbon and LiF co-modified Si-based anode material for lithium ion batteries. Ceram Int 43(12):8590–8595

    Article  CAS  Google Scholar 

  31. Zhou R, Fan R, Tian Z, Zhou Y, Guo H, Kou L, Zhang D (2016) Preparation and characterization of core–shell structure Si/C composite with multiple carbon phases as anode materials for lithium ion batteries. J Alloy Compd 658:91–97

    Article  CAS  Google Scholar 

  32. Li M, Hou X, Sha Y, Wang J, Hu S, Liu X, Shao Z (2014) Facile spray-drying/pyrolysis synthesis of core–shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries. J Power Sources 248:721–728

    Article  CAS  Google Scholar 

  33. Li J, Wang J, Yang J, Ma X, Lu S (2016) Scalable synthesis of a novel structured graphite/silicon/pyrolyzed-carbon composite as anode material for high-performance lithium-ion batteries. J Alloy Compd 688:1072–1079

    Article  CAS  Google Scholar 

  34. Yang Y, Wang Z, Zhou Y, Guo H, Li X (2017) Synthesis of porous Si/graphite/carbon nanotubes@ C composites as a practical high-capacity anode for lithium-ion batteries. Mater Lett 199:84–87

    Article  CAS  Google Scholar 

  35. Shim J, Striebel KA (2004) The dependence of natural graphite anode performance on electrode density. J Power Sources 130(1):247–253

    Article  CAS  Google Scholar 

  36. Shi L, Wang W, Wang A, Yuan K, Jin Z, Yang Y (2016) Scalable synthesis of core-shell structured SiOx/nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries. J Power Sources 318:184–191

    Article  CAS  Google Scholar 

  37. Zhou R, Guo H, Yang Y, Wang Z, Li X, Zhou Y (2016) N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray-dried Si/graphite composite anode material for lithium ion batteries. J Alloys Compd 689:130–137

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Science and Technology Support Program of China (2015BAB06B00), the Program of Strategic Emerging Industries of Hunan Province, China (Grant No. 2017GK4019), and the Fundamental Research Funds for the Central Universities of Central South University (No. 2017zzts126). Additionally, we thank the financial supporting from the collaborative Innovation Center of Manganese-Zinc-Vanadium Industrial Technology (the 20ll plan of Hunan province).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajun Guo.

Electronic supplementary material

ESM 1

(DOC 655 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Yang, Y., Guo, H. et al. Compact structured silicon/carbon composites as high-performance anodes for lithium ion batteries. Ionics 24, 3405–3411 (2018). https://doi.org/10.1007/s11581-018-2486-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2486-6

Keywords

Navigation