Skip to main content
Log in

Synergistic growth of Li3V2(PO4)3@MWCNTs@C nanocomposites as high-rate cathodes for Li-ion batteries

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Composite cathodes composed of Li3V2(PO4)3 and multiwall carbon nanotubes (MWCNTs) for high-performance Li-ion batteries were synthesized via a fast sol-gel method, using ascorbic acid as reductive reagent and carbon source, while using MWCNTs as high conductivity modifier. Due to the synergistic effect between functional groups of MWCNTs and reductive functionality of ascorbic acid, MWCNTs were uniformly embedded into Li3V2(PO4)3@C for constructing a unique three-dimensional architecture with excellent electronic and ionic conductivity to achieve superior high rate performance. When tested as a cathode material in lithium-ion batteries, the optimal Li3V2(PO4)3@MWCNTs@C composite can deliver 123.5 mAh g−1 of specific capacity at 5 C and maintain a capacity retention of 96.3% after 300 cycles; even after cycled at 15-C rate for 300 times, it still possesses 90.2 mAh g−1 of specific capacity, demonstrating a great promising result for cathode alternative in high-power lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264

  2. Goodenough JB, Park KS (2013) The Li-Ion Rechargeable Battery: A Perspective. J Am Chem Soc 135(4):1167–1176. https://doi.org/10.1021/ja3091438

    Article  CAS  Google Scholar 

  3. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194. https://doi.org/10.1149/1.1837571

    Article  CAS  Google Scholar 

  4. Jian Z, Hu YS, Ji X, Chen W (2017) NASICON-Structured materials for energy storage. Adv Mater 29(20). https://doi.org/10.1002/adma.201601925

  5. Huang H, Yin S-C, Kerr T, Taylor N, Nazar LF (2002) Nanostructured composites: a high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries. Adv Mater 14(21):1525–1528. https://doi.org/10.1002/1521-4095(20021104)14:21<1525::AID-ADMA1525>3.0.CO;2-3

    Article  CAS  Google Scholar 

  6. Yin S-C, Grondey H, Strobel P, Anne M, Nazar LF (2003) Electrochemical Property: Structure Relationships in Monoclinic Li3-yV2(PO4)3. J Am Chem Soc 125(34):10402–10411. https://doi.org/10.1021/ja034565h

    Article  CAS  Google Scholar 

  7. Yan J, Yuan W, Xie H, Tang Z-Y, Mao W-F, Ma L (2012) Novel self-catalyzed sol–gel synthesis of high-rate cathode Li3V2(PO4)3/C for lithium ion batteries. Mater Lett 71:1–3. https://doi.org/10.1016/j.matlet.2011.11.099

    Article  CAS  Google Scholar 

  8. Yan J, Cao Y, Liu F (2016) Stable high-rate cycling electrode based on Li3V2(PO4)3/C using polyamide as a novel carbon source. RSC Adv 6(114):113228–113233. https://doi.org/10.1039/C6RA22714G

    Article  CAS  Google Scholar 

  9. Zhang L, Hu L, Fei L, Qi J, Hu Y, Wang Y, Gu H (2017) Large-scale synthesis of Li3V2(PO4)3@C composites by a modified carbothermal reduction method as cathode material for lithium-ion batteries. RSC Adv 7(41):25422–25428. https://doi.org/10.1039/C7RA03483K

    Article  CAS  Google Scholar 

  10. Mao W-F, Yan J, Xie H, Wu Y, Tang Z-Y, Xu Q (2012) A novel synthesis of Li3V2(PO4)3/C nanocomposite with excellent high-rate capacity and cyclability. Mater Res Bull 47(12):4527–4530. https://doi.org/10.1016/j.materresbull.2012.09.047

    Article  CAS  Google Scholar 

  11. Guo F, Zou X, Wang K-X, Liu Y, Zhang F, Wu Y, Li G-D (2015) Li3V2(PO4)3particles embedded in porous N-doped carbon as high-rate and long-life cathode material for Li-ion batteries. RSC Adv 5(95):78209–78214. https://doi.org/10.1039/C5RA14943F

    Article  CAS  Google Scholar 

  12. Li Y, Xiang K, Shi C, Zhou W, Zhu Y, Chen H (2017) Frogegg-like Li3V2(PO4)3/carbon composite with three dimensional porous structure and its improved electrochemical performance in lithium ion batteries. Mater Lett 204:104–107

  13. Yan J, Yuan W, Xie H, Tang Z-Y, Liu F-J, Mao W-F, Xu Q, Zhang X-H (2012) Preparation and electrochemical performance of Na-doped Li3V2(PO4)3/C cathode material. J Solid State Electrochem 16(10):3201–3206. https://doi.org/10.1007/s10008-012-1764-x

    Article  CAS  Google Scholar 

  14. Yuan W, Yan J, Tang Z, Sha O, Wang J, Mao W, Ma L (2012) Mo-doped Li3V2(PO4)3/C cathode material with high rate capability and long term cyclic stability. Electrochim Acta 72:138–142. https://doi.org/10.1016/j.electacta.2012.04.030

    Article  CAS  Google Scholar 

  15. Wu W-L, Liang J, Yan J, Mao W-F (2013) Synthesis of Li3Ni x V2−x (PO4)3/C cathode materials and their electrochemical performance for lithium ion batteries. J Solid State Electrochem 17(7):2027–2033. https://doi.org/10.1007/s10008-013-2049-8

    Article  CAS  Google Scholar 

  16. Ma C-X, Mao W-F, Tang Z-Y, Xu Q (2015) Synthesis of Li3W x V2−x (PO4)3/C cathode materials and their electrochemical performance for lithium-ion batteries. J Solid State Electrochem 19(2):519–524. https://doi.org/10.1007/s10008-014-2630-9

    Article  CAS  Google Scholar 

  17. Wang P, Shao L, Yu H, Dong J, Yi T-F, Qian S, Yan L, Li P, Shui M, Shu J (2017) Observation on the electrochemical reactions of Li 3-x Na x V 2 (PO 4 ) 3 (0 ≤ x ≤ 3) as cathode materials for rechargeable batteries. J Alloys Compd 690:31–41. https://doi.org/10.1016/j.jallcom.2016.08.091

    Article  Google Scholar 

  18. Zhang Y, Su Z, Ding J (2017) Synthesis and electrochemical properties of Ge-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries. J Alloys Compd 702:427–431. https://doi.org/10.1016/j.jallcom.2017.01.267

    Article  CAS  Google Scholar 

  19. Zhang C, Shen L, Li H, Ping N, Zhang X (2016) Enhanced electrochemical properties of MgF2 and C co-coated Li3V2(PO4)3 composite for Li-ion batteries. J Electroanal Chem 762:1–6. https://doi.org/10.1016/j.jelechem.2015.12.022

    Article  CAS  Google Scholar 

  20. He W, Wei C, Zhang X, Wang Y, Liu Q, Shen J, Wang L, Yue Y (2016) Li 3 V 2 (PO 4 ) 3 /LiFePO 4 composite hollow microspheres for wide voltage lithium ion batteries. Electrochim Acta 219:682–692. https://doi.org/10.1016/j.electacta.2016.10.047

    Article  CAS  Google Scholar 

  21. Wang J, Zhang X, Liu J, Yang G, Ge Y, Yu Z, Wang R, Pan X (2010) Long-term cyclability and high-rate capability of Li3V2(PO4)3/C cathode material using PVA as carbon source. Electrochim Acta 55(22):6879–6884. https://doi.org/10.1016/j.electacta.2010.05.077

    Article  CAS  Google Scholar 

  22. Wang J, Liu J, Yang G, Zhang X, Yan X, Pan X, Wang R (2009) Electrochemical performance of Li3V2(PO4)3/C cathode material using a novel carbon source. Electrochim Acta 54(26):6451–6454. https://doi.org/10.1016/j.electacta.2009.05.002

    Article  CAS  Google Scholar 

  23. Huang JS, Yang L, Liu KY (2011) One-pot syntheses of Li3V2(PO4)3/C cathode material for lithium ion batteries via ascorbic acid reduction approach. Mater Chem Phys 128(3):470–474. https://doi.org/10.1016/j.matchemphys.2011.03.036

    Article  CAS  Google Scholar 

  24. Wang L, Tang Z, Ma L, Zhang X (2011) High-rate cathode based on Li3V2(PO4)3/C composite material prepared via a glycine-assisted sol–gel method. Electrochem Commun 13(11):1233–1235. https://doi.org/10.1016/j.elecom.2011.08.036

    Article  CAS  Google Scholar 

  25. Qiao YQ, Wang XL, Xiang JY, Zhang D, Liu WL, Tu JP (2011) Electrochemical performance of Li3V2(PO4)3/C cathode materials using stearic acid as a carbon source. Electrochim Acta 56(5):2269–2275. https://doi.org/10.1016/j.electacta.2010.11.073

    Article  CAS  Google Scholar 

  26. Qiao YQ, Wang XL, Zhou Y, Xiang JY, Zhang D, Shi SJ, Tu JP (2010) Electrochemical performance of carbon-coated Li3V2(PO4)3 cathode materials derived from polystyrene-based carbon-thermal reduction synthesis. Electrochim Acta 56(1):510–516. https://doi.org/10.1016/j.electacta.2010.08.053

    Article  CAS  Google Scholar 

  27. Yan J, Lui G, Tjandra R, Wang X, Rasenthiram L, Yu A (2015) α-NiS grown on reduced graphene oxide and single-wall carbon nanotubes as electrode materials for high-power supercapacitors. RSC Adv 5(35):27940–27945. https://doi.org/10.1039/C5RA02996A

    Article  CAS  Google Scholar 

  28. Chen Z, Augustyn V, Wen J, Zhang Y, Shen M, Dunn B, Lu Y (2011) High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv Mater 23(6):791–795. https://doi.org/10.1002/adma.201003658

    Article  CAS  Google Scholar 

  29. Zhao A, Masa J, Xia W, Maljusch A, Willinger MG, Clavel G, Xie K, Schlogl R, Schuhmann W, Muhler M (2014) Spinel Mn–Co Oxide in N-Doped Carbon Nanotubes as a Bifunctional Electrocatalyst Synthesized by Oxidative Cutting. J Am Chem Soc 136(21):7551–7554. https://doi.org/10.1021/ja502532y

    Article  CAS  Google Scholar 

  30. Feng Y (2010) The preparation and electrochemical performances of LiFePO4-multiwalled nanotubes composite cathode materials for lithium ion batteries. Mater Chem Phys 121(1–2):302–307. https://doi.org/10.1016/j.matchemphys.2010.01.038

    Article  CAS  Google Scholar 

  31. Zhang Y, Lv Y, Wang L, Zhang A, Song Y, Li G (2011) Synthesis and electrochemical properties of Li3V2(PO4)3/MWCNTs composite cathodes. Synth Met 161(19–20):2170–2173. https://doi.org/10.1016/j.synthmet.2011.08.022

    Article  CAS  Google Scholar 

  32. Liu C, Massé R, Nan X, Cao G (2016) A promising cathode for Li-ion batteries: Li 3 V 2 (PO 4 ) 3. Energy Storage Mater 4:15–58. https://doi.org/10.1016/j.ensm.2016.02.002

    Article  Google Scholar 

  33. Ni Q, Bai Y, Yang Z, Li Y, Chen G, Ling L, Ren H, Chen S, Wu F, Wu C (2017) Wet-chemical coordination synthesized Li 3 V 2 (PO 4 ) 3 /C for Li-ion battery cathodes. J Alloys Compd 729:49–56. https://doi.org/10.1016/j.jallcom.2017.09.106

    Article  CAS  Google Scholar 

  34. Zhang C, Li H, Ping N, Pang G, Xu G, Zhang X (2014) Facile synthesis of nitrogen-doped carbon derived from polydopamine-coated Li3V2(PO4)3as cathode material for lithium-ion batteries. RSC Adv 4(73):38791–38796. https://doi.org/10.1039/C4RA05089D

    Article  CAS  Google Scholar 

  35. Chen H, Wang Z-K, Li G-D, Guo F-F, Fan M-H, Wu X-Y, Cao X-C (2015) Enhanced electrochemical performance of Li3V2(PO4)3microspheres assembled with nanoparticles embedded in a carbon matrix. RSC Adv 5(40):31410–31414. https://doi.org/10.1039/C5RA01992C

    Article  CAS  Google Scholar 

  36. Chen R, Lai J, Li Y, Cao M, Chen S, Wu F (2016) β-Cyclodextrin coated lithium vanadium phosphate as novel cathode material for lithium ion batteries. RSC Adv 6(105):103364–103371. https://doi.org/10.1039/C6RA22400H

    Article  CAS  Google Scholar 

  37. Sathiya M, Prakash AS, Ramesha K, Tarascon JM, Shukla AK (2011) V2O5-Anchored Carbon Nanotubes for Enhanced Electrochemical Energy Storage. J Am Chem Soc 133(40):16291–16299. https://doi.org/10.1021/ja207285b

    Article  CAS  Google Scholar 

  38. Zhou A, Xu J, Dai X, Yang B, Lu Y, Wang L, Fan C, Li J (2016) Improved high-voltage and high-temperature electrochemical performances of LiCoO2 cathode by electrode sputter-coating with Li3PO4. J Power Sources 322:10–16. https://doi.org/10.1016/j.jpowsour.2016.04.092

    Article  CAS  Google Scholar 

  39. Zhong C, Su X, Hou G, Yu F, Bi S, Liu Z, Li H (2017) Effect of different treatment methods on the electrochemical properties of LiV3O8 at elevated temperatures. Ceram Int 43(1):414–419. https://doi.org/10.1016/j.ceramint.2016.09.174

    Article  CAS  Google Scholar 

  40. Maletti S, Sarapulova A, Tsirlin AA, Oswald S, Fauth F, Giebeler L, Bramnik NN, Ehrenberg H, Mikhailova D (2018) Electrochemical behavior of LiV 3 O 8 positive electrode in hybrid Li,Na–ion batteries. J Power Sources 373:1–10. https://doi.org/10.1016/j.jpowsour.2017.10.086

    Article  CAS  Google Scholar 

  41. Liu X-M, Huang Z-D, Oh S, Ma P-C, Chan PCH, Vedam GK, Kang K, Kim J-K (2010) Sol–gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries. J Power Sources 195(13):4290–4296. https://doi.org/10.1016/j.jpowsour.2010.01.068

    Article  CAS  Google Scholar 

  42. Zhu C-L, Zhang M-L, Qiao Y-J, Gao P, Chen Y-J (2010) High capacity and good cycling stability of multi-walled carbon nanotube/SnO2 core–shell structures as anode materials of lithium-ion batteries. Mater Res Bull 45(4):437–441. https://doi.org/10.1016/j.materresbull.2009.11.011

    Article  CAS  Google Scholar 

  43. Huang Y, Dong Z, Jia D, Guo Z, Cho WI (2011) Electrochemical properties of α-Fe2O3 /MWCNTs as anode materials for lithium-ion batteries. Solid State Ionics 201(1):54–59. https://doi.org/10.1016/j.ssi.2011.07.018

    Article  CAS  Google Scholar 

  44. Uysal M, Cetinkaya T, Alp A, Akbulut H (2015) Fabrication of Sn–Ni/MWCNT composite coating for Li-ion batteries by pulse electrodeposition: effects of duty cycle. Appl Surf Sci 334:80–86. https://doi.org/10.1016/j.apsusc.2014.08.073

    Article  CAS  Google Scholar 

  45. Kose H, Aydin AO, Akbulut H (2014) Free-standing SnO 2 /MWCNT nanocomposite anodes produced by different rate spin coatings for Li-ion batteries. Int J Hydrog Energy 39(36):21435–21446. https://doi.org/10.1016/j.ijhydene.2014.01.212

    Article  CAS  Google Scholar 

  46. Song M-K, Park S, Alamgir FM, Cho J, Liu M (2011) Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater Sci Eng R 72(11):203–252. https://doi.org/10.1016/j.mser.2011.06.001

    Article  Google Scholar 

  47. Ding S, Chen JS, Lou XWD (2011) One-dimensional hierarchical structures composed of novel metal oxide nanosheets on a carbon nanotube backbone and their lithium-storage properties. Adv Funct Mater 21(21):4120–4125. https://doi.org/10.1002/adfm.201100781

    Article  CAS  Google Scholar 

  48. Zhang S, Gu H, Pan H, Yang S, Du W, Li X, Gao M, Liu Y, Zhu M, Ouyang L, Jian D, Pan F (2017) A novel strategy to suppress capacity and voltage fading of Li- and Mn-rich layered oxide cathode material for lithium-ion batteries. Adv Energy Mater 7(6):1601066. https://doi.org/10.1002/aenm.201601066

    Article  Google Scholar 

  49. Mao W-f, N-n Z, Z-y T, Y-q F, Ma C-x (2014) High rate capability of Li3V2(PO4)3/C composites prepared via a TPP-assisted carbothermal method and its application in Li3V2(PO4)3||Li4Ti5O12. J Alloys Compd 588:25–29. https://doi.org/10.1016/j.jallcom.2013.11.081

    Article  CAS  Google Scholar 

  50. Xiang JY, Tu JP, Zhang J, Zhong J, Zhang D, Cheng JP (2010) Incorporation of MWCNTs into leaf-like CuO nanoplates for superior reversible Li-ion storage. Electrochem Commun 12(8):1103–1107. https://doi.org/10.1016/j.elecom.2010.05.039

    Article  CAS  Google Scholar 

  51. Wu K (2012) Preparation and characterization of Li3V2(PO4)3/MWCNTs cathode material for lithium-ion batteries. Ionics 18(1–2):55–58

  52. Cui XM, Liu TT, Zhang XF, Xiang X (2017) Enhanced electrochemical performance of lithium ion battery cathode Li3V2(PO4)3/C. Ionics 23(12):3289–3293

  53. Yan H, Zhang G, Li Y (2017) Synthesis and characterization of advanced Li 3 V 2 (PO 4 ) 3 nanocrystals@conducting polymer PEDOT for high energy lithium-ion batteries. Appl Surf Sci 393:30–36. https://doi.org/10.1016/j.apsusc.2016.09.156

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Key R&D Research Program (2017YFB0102001) and the Doctoral Foundation of Zhengzhou University of Light Industry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Bo Zhang or Ji Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LB., Wang, LZ. & Yan, J. Synergistic growth of Li3V2(PO4)3@MWCNTs@C nanocomposites as high-rate cathodes for Li-ion batteries. Ionics 24, 629–637 (2018). https://doi.org/10.1007/s11581-017-2403-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2403-4

Keywords

Navigation