Skip to main content
Log in

Synthesis of Li3W x V2−x (PO4)3/C cathode materials and their electrochemical performance for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

W-doped Li3V2(PO4)3/C cathode material is firstly proved useful for enhancing the electrochemical performance of high-rate Li3V2(PO4)3/C synthesized via a sample carbothermal method using meso-tetraphenylporphyrin (TPP) as carbon source. W-doped Li3W x V2−x (PO4)3/C (x = 0, 0.01, 0.02, 0.03, and 0.04) are prepared. The X-ray diffractometer, scanning electron microscopy, and high-resolution transmission electron microscopy are employed to characterize the prepared materials, and the evidences show that W-doping does not alter the structure of Li3V2(PO4)3 lattice. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results show that appropriate W-doped sample has a relatively looser structure than the others. From the analysis of electrochemical performance, the Li3W0.03V1.97 (PO4)3/C composite exhibits more excellent electrochemical performance than the other samples. In addition, the electrochemical performance of the Li3W0.03V1.97 (PO4)3/C composite at 20 C rate is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458(7235):190–193

    Article  CAS  Google Scholar 

  2. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries†. Chem Mater 22(3):587–603

    Article  CAS  Google Scholar 

  3. Yin SC, Grondey H, Strobel P, Anne M, Nazar LF (2003) Electrochemical property: structure relationships in monoclinic Li3-y V2(PO4)3. J Am Chem Soc 125(34):10402–10411

    Article  CAS  Google Scholar 

  4. Zheng J-C, Li X-H, Wang Z-X, Guo H-J, Hu Q-Y, Peng W-J (2009) Li3V2(PO4)3 cathode material synthesized by chemical reduction and lithiation method. J Power Sources 189(1):476–479

    Article  CAS  Google Scholar 

  5. Yuan W, Yan J, Tang Z, Ma L (2011) Synthesis of high performance Li3V2(PO4)3/C cathode material by ultrasonic-assisted sol–gel method. Ionics 18(3):329–335

    Article  Google Scholar 

  6. Yang CC, Kung SH, Lin SJ, Chien WC (2014) Li3V2(PO4)3/C composite materials synthesized using the hydrothermal method with double-carbon sources. J Power Sources 251:296–304

    Article  CAS  Google Scholar 

  7. Yin S-C, Strobel PS, Grondey H, Nazar LF (2004) Li2.5 V2(PO4)3: A room-temperature analogue to the fast-ion conducting high-temperature γ-phase of Li3V2(PO4)3. Chem Mater:1456–1465.

  8. Wang LJ, Li XX, Tang ZY, Zhang XH (2012) Research on Li3V2(PO4)3/Li4Ti5O12/C composite cathode material for lithium ion batteries. Electrochem Commun 22:73–76

    Article  Google Scholar 

  9. Eftekhari A, Moghaddam AB, Yazdani B, Moztarzadeh F (2006) Effects of metal source in metal substitution of lithium manganese oxide spinel. Electrochim Acta 52(4):1491–1498

    Article  CAS  Google Scholar 

  10. Xie K, Qin X, Wang X, Wang Y, Tao H, Wu Q, Yang L, Hu Z (2011) Carbon nanocages as supercapacitor electrode materials. Adv Mater

  11. Yuan W, Yan J, Tang Z, Sha O, Wang J, Mao W, Ma L (2012) Mo-doped Li3V2(PO4)3/C cathode material with high rate capability and long term cyclic stability. Electrochim Acta 72:138–142

    Article  CAS  Google Scholar 

  12. Chen Q, Zhang T, Qiao X, Li D, Yang J (2013) Li3V2(PO4)3/C nanofibers composite as a high performance cathode material for lithium-ion battery. J Power Sources 234:197–200

    Article  CAS  Google Scholar 

  13. Bai G, Yang Y, Shao H (2013) Synthesis and electrochemical properties of polyhedron-shaped Li3V2−xSnx(PO4)3 as cathode material for lithium-ion batteries. J Electroanal Chem 688:98–102

    Article  CAS  Google Scholar 

  14. Fu P, Zhao Y, Dong Y, An X, Shen G (2006) Synthesis of Li3V2(PO4)3 with high performance by optimized solid-state synthesis routine. J Power Sources 162(1):651–657

    Article  CAS  Google Scholar 

  15. Wei Q, An Q, Chen D, Mai L, Chen S, Zhao Y, Hercule KM, Xu L, Minhas-Khan A, Zhang Q (2014) One-pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries. Nano Lett 14(2):1042–1048

    Article  CAS  Google Scholar 

  16. Panda MK, Ladomenou K, Coutsolelos AG (2012) Porphyrins in bio-inspired transformations: light-harvesting to solar cell. Coord Chem Rev 256(21):2601–2627

    Article  CAS  Google Scholar 

  17. van Staden JF, Stefan-van Staden RI (2010) Application of porphyrins in flow-injection analysis: a review. Talanta 80(5):1598–1605

    Article  Google Scholar 

  18. Mao WF, Zhang NN, Tang ZY, Feng YQ, Ma CX (2014) High rate capability of Li3V2(PO4)3/C composites prepared via a TPP-assisted carbothermal method and its application in Li3V2(PO4)3||Li4Ti5O12. J Alloy Compd 588:25–29

    Article  CAS  Google Scholar 

  19. Li Y, Hong L, Sun J, Wu F, Chen S (2012) Electrochemical performance of Li3V2(PO4)3/C prepared with a novel carbon source, EDTA. Electrochim Acta 85:110–115

    Article  CAS  Google Scholar 

  20. Wang ZL, Sun SR, Xia DG, Chu WS, Zhang S, Wu ZY (2008) Investigation of electronic conductivity and occupancy sites of Mo doped into LiFePO4 by ab Initio calculation and X-ray absorption spectroscopy. J Phys Chem C 112(44):17450–17455

    Article  CAS  Google Scholar 

  21. Rui XH, Li C, Liu J, Cheng T, Chen CH (2010) The Li3V2(PO4)3/C composites with high-rate capability prepared by a maltose-based sol–gel route. Electrochim Acta 55(22):6761–6767

    Article  CAS  Google Scholar 

  22. W-l W, Liang J, Yan J, W-f M (2013) Synthesis of Li3Ni x V2−x (PO4)3/C cathode materials and their electrochemical performance for lithium ion batteries. J Solid State Electrochem 17(7):2027–2033

    Article  Google Scholar 

  23. Ko YN, Koo HY, Kim JH, Yi JH, Kang YC, Lee J-H (2011) Characteristics of Li3V2(PO4)3/C powders prepared by ultrasonic spray pyrolysis. J Power Sources 196(16):6682–6687

    Article  CAS  Google Scholar 

  24. Meethong N, Kao YH, Speakman SA, Chiang YM (2009) Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties. Adv Funct Mater 19(7):1060–1070

    Article  CAS  Google Scholar 

  25. Villegas M, Caballero AC, Moure C, Durán P, Fernandez JF (1999) Low-temperature sintering and electrical properties of chemically W-doped Bi4Ti3O12 ceramics. J Eur Ceram Soc 19:1183–1186

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-xiang Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Cx., Mao, Wf., Tang, Zy. et al. Synthesis of Li3W x V2−x (PO4)3/C cathode materials and their electrochemical performance for lithium-ion batteries. J Solid State Electrochem 19, 519–524 (2015). https://doi.org/10.1007/s10008-014-2630-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2630-9

Keywords

Navigation