Skip to main content
Log in

Correlation between the proton conductivity and diffusion coefficient of sulfonic acid functionalized chitosan and Nafion composites via impedance spectroscopy measurements

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Electrochemical Impedance Spectroscopy (EIS) was employed to estimate the global transverse proton diffusion coefficient, D H +, in sulfonic acid functionalized sustainable chitosan (CS-SO3H)/Nafion composite films. In contrast to conventional conductivity measurements, EIS measurements were performed at room temperature with a film/liquid interface. In this configuration, the measure of the bulk proton transport is correlated to the D H + of the membranes which is close to 1.1 × 10−6 cm2 s−1 and 0.33 × 10−6 cm2 s−1 with and without CS-SO3H, respectively. These D H + values permitted the proton conductivity (σ H +) ratio (∼3.9) between the Nafion/CS-SO3H composite and pristine Nafion films to be estimated by using the Nernst-Einstein relationship. This ratio presents a good agreement with that obtained for the σ H + of bulk membranes (∼3.2) measured at 30 °C and 90% RH. The agreement between the σ H + ratios validates our methodology for D H + estimation by EIS and suggests that the more than three times enhanced \( {\sigma}_H^{+} \) is governed by the ∼3 times higher D H + in the presence of CS-SO3H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Article  CAS  Google Scholar 

  2. Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  3. Manthiram A, Murugan AV, Sarkar A, Muraliganth T (2008) Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ Sci 1:621–638

    Article  CAS  Google Scholar 

  4. Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu QH (2011) Redox flow batteries: a review. J Appl Electrochem 41:1137–1164

    Article  CAS  Google Scholar 

  5. Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA (2000) Electron and proton conducting polymers: recent developments and prospects. Electrochim Acta 45:2403–2421

    Article  CAS  Google Scholar 

  6. Kusoglu A, Kushner D, Paul DK, Karan K, Hickner MA, Weber AZ (2014) Impact of substrate and processing on confinement of Nafion thin films. Adv Func Mater 24:4763–4774

    Article  CAS  Google Scholar 

  7. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4586

    Article  CAS  Google Scholar 

  8. Hickner MA, Pivovar BS (2005) The chemical and structural nature of proton exchange membrane fuel cell properties. Fuel Cells 5:213–229

    Article  CAS  Google Scholar 

  9. Kraytsberg A, Ein-Eli Y (2014) Review of advanced materials for proton exchange membrane fuel cells. Energy Fuel 28:7303–7330

    Article  CAS  Google Scholar 

  10. Li X, Zhang H, Mai Z, Zhang H, Vankelecom I (2011) Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ Sci 4:1147–1160

    Article  CAS  Google Scholar 

  11. Pintauro PN (2015) Perspectives on membranes and separators for electrochemical energy conversion and storage devices. Polym Rev 55:201–207

    Article  CAS  Google Scholar 

  12. Ye G, Hayden CA, Goward GR (2007) Proton dynamics of Nafion and Nafion/SiO2 composites by solid state NMR and pulse field gradient NMR. Macromolecules 40:1529–1537

    Article  CAS  Google Scholar 

  13. Zawodzinski TA, Neeman M, Sillerud LO, Gottesfeld S (1991) Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes. J Phys Chem 95:6040–6044

    Article  CAS  Google Scholar 

  14. Kidena K, Ohkubo T, Takimoto N, Ohira A (2010) PFG-NMR approach to determining the water transport mechanism in polymer electrolyte membranes conditioned at different temperatures. Eur Polym J 46:450–455

    Article  CAS  Google Scholar 

  15. Volino F, Pineri M, Dianoux AJ, De Geyer A (1982) Water mobility in a water-soaked nafion® membrane: a high-resolution neutron quasielastic study. J Polym Sci Polym Phys 20:481–496

    Article  CAS  Google Scholar 

  16. Pivovar AM, Pivovar BS (2005) Dynamic behavior of water within a polymer electrolyte fuel cell membrane at low hydration levels. J Phys Chem B 109:785–793

    Article  CAS  Google Scholar 

  17. Devanathan R, Venkatnathan A, Dupuis MJ (2007) Atomistic simulation of nafion membrane: I. Effect of hydration on membrane nanostructure. J Phys Chem B 111:8069–8079

    Article  CAS  Google Scholar 

  18. Ohkuba T, Kidena K, Takimoto N (2012) Molecular dynamics simulations of nafion and sulfonated poly ether sulfone membranes II. Dynamic properties of water and hydronium. J Mol Model 18:533–540

    Article  Google Scholar 

  19. Selvan ME, Keffer DJ, Cui S (2011) Reactive molecular dynamics study of proton transport in polymer electrolyte membranes. J Phys Chem C 115:18835–18846

    Article  CAS  Google Scholar 

  20. Devenathan R, Dupuis M (2012) Insight from molecular modelling: does the polymer side chain length matter for transport properties of perfluorosulfonic acid membranes? Phys Chem Chem Phys 14:11281–11295

    Article  Google Scholar 

  21. Jorn R, Voth GA (2012) Mesoscale simulation of proton transport in proton exchange membranes. J Phys Chem C 116:10476–10489

    Article  CAS  Google Scholar 

  22. Sel O, Kim LTT, Debiemme-Chouvy C, Gabrielli C, Laberty-Robert C, Perrot H, Sanchez C (2010) Proton insertion properties in a hybrid membrane/conducting polymer bilayer investigated by ac-electrogravimetry. J Electrochem Soc 157:F69–F76

    Article  CAS  Google Scholar 

  23. Kim LTT, Sel O, Debiemme-Chouvy C, Gabrielli C, Laberty-Robert C, Perrot H, Sanchez C (2010) Proton transport properties in hybrid membranes investigated by ac-electrogravimetry. Electrochem Commun 12:1136–1139

    Article  CAS  Google Scholar 

  24. Kim LTT, Debiemme-Chouvy C, Gabrielli C, Perrot H (2012) Redox switching of heteropolyanions entrapped in polypyrrole films investigated by ac electrogravimetry. Langmuir 38:13746–13757

    Google Scholar 

  25. Dos Santos L, Laberty-Robert C, Marechal M, Perrot H, Sel O (2015) Proton diffusion coefficient in electrospun hybrid membranes by electrochemical impedance spectroscopy. Langmuir 36:9737–9741

    Article  Google Scholar 

  26. Vaghari H, Jafarizadeh-Malmiri H, Berenjian A, Anarjan N (2013) Recent advances in application of chitosan in fuel cells. Sustain Chem Processes 1:16–28

    Article  Google Scholar 

  27. Varshney P, Gupta S (2011) Natural polymer-based electrolytes for electrochemical devices: a review. Ionics 17:479–483

    Article  CAS  Google Scholar 

  28. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014

    Article  CAS  Google Scholar 

  29. Deng Y, Helms BA, Rolandi CM (2015) Synthesis of pyridine chitosan and its protonic conductivity. J Polym Sci Part A: Polym Chem 53:211–214

    Article  CAS  Google Scholar 

  30. Bockris J, Reddy A (1970) In: Bockris J (ed) Modern electrochemistry, vol 1. Plenum Press, New York, pp 374–382

    Google Scholar 

  31. Debiemme-Chouvy C, Rubin A, Perrot H, Deslouis C, Cachet H (2008) ac-Electrogravimetry study of ionic and solvent motion in polypyrrole films doped with a heteropolyanion, SiMo12O44 . Electrochim Acta 53:3836–3843

    Article  CAS  Google Scholar 

  32. Siroma Z, Ioroi T, Fujiwara N, Yasuda K (2002) Proton conductivity along interface in thin cast film of Nafion. Electrochem Commun 4:143–145

    Article  CAS  Google Scholar 

  33. Paul DK, Fraser A, Karan K (2011) Towards the understanding of proton conduction mechanism in PEMFC catalyst layer: conductivity of adsorbed Nafion films. Electrochem Commun 13:774–777

    Article  CAS  Google Scholar 

  34. Paul DK, Karan K, Docoslis A, Giorgi JB, Pearce J (2013) Characteristics of self-assembled ultrathin Nafion films. Macromolecules 46:3461–3475

    Article  CAS  Google Scholar 

  35. Eastman SA, Sangcheol K, Page KA, Rowe BW, Kang S, DeCaluwe SC, Dura JA, Soles CL, Yager KG (2012) Effect of confinement on structure, water solubility, and water transport in nafion thin films. Macromolecules 45:7920–7930

    Article  CAS  Google Scholar 

  36. Bebin P, Caravanier M, Galiano H (2006) Nafion®/clay-SO3H membrane for proton exchange membrane fuel cell application. J Membr Sci 278:35–42

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I.R. acknowledges “The Emmag Programme” for the financial support of her Ph.D. thesis. The authors thank Ms. Françoise Pillier for the FEG-SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Perrot or O. Sel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ressam, I., Lahcini, M., Belen Jorge, A. et al. Correlation between the proton conductivity and diffusion coefficient of sulfonic acid functionalized chitosan and Nafion composites via impedance spectroscopy measurements. Ionics 23, 2221–2227 (2017). https://doi.org/10.1007/s11581-017-2151-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2151-5

Keywords

Navigation