, Volume 23, Issue 9, pp 2293–2300 | Cite as

Fe3P impurity phase in high-quality LiFePO4: X-ray diffraction and neutron-graphical studies

  • Eugeny ErshenkoEmail author
  • Alexander Bobyl
  • Mikhail Boiko
  • Yan Zubavichus
  • Vladimir Runov
  • Mikhail Trenikhin
  • Mikhail Sharkov
Original Paper


High discharge capacity and long life cycles of electrodes fabricated from various LiFePO4 powders have been used to select samples for detailed structural studies. In some samples, the presence of ferromagnetic Fe3P crystallites was revealed by the synchrotron X-ray diffraction analysis, with the integral intensity ratio of the peaks Fe3P (231) and LiFePO4 (112) equal to ∼1/12. Small-angle polarized neutron scattering (SAPNS) detected the presence of magnetic nuclear contrasting regions with size of 17 ± 1 nm. The average diameter of LiFePO4 crystallites is 230 nm, and Fe3P crystallites were found as 17 × 54 nm2 plates. The high quality of these samples was provided by their manufacturer via synthesis of the Fe3P impurity phase. It can be stated that the set of studies, developed in the study, is helpful in a search for new effective impurity phases and in optimization of their parameters.


Li-ion batteries XRD SAPNS Impurity 



We are grateful to professor AV Churikov for consultations on preparation of samples and on carrying out electrochemical tests.


  1. 1.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochemical Soc 144:1188–1194CrossRefGoogle Scholar
  2. 2.
    Ravet N, Goodenough JB, Besner S, Simoneau M, Hovington P, Armand M (1999) Improved iron-based cathode material. Proceedings of the 196th ECS meeting, Honolulu, extended abstract № 127Google Scholar
  3. 3.
    Dontigny M, Dubé J, Guerfi A, Donald PH Wu and Zaghib K. HQ Li4Ti5O12/LiFePO4 power battery for fast charge applications. Abstract #757, The 15th International Meeting on Lithium Batteries - IMLB 2010, © 2010 The Electrochemical SocietyGoogle Scholar
  4. 4.
    Wang J, Sun X (2015) Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ Sci 8:1110–1138CrossRefGoogle Scholar
  5. 5.
    Liu C, Neale ZG, Cao G (2016) Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today 19:109–123CrossRefGoogle Scholar
  6. 6.
    Satyavani TVSL, Srinivas Kumar A, Subba Rao PSV (2016) Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: a review. Engineering Science and Technology, an International Journal 19:178–188CrossRefGoogle Scholar
  7. 7.
    Gong C, Xue Z, Wen S, Ye Y, Xie X (2016) Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries. J Power Sources 318:93–112CrossRefGoogle Scholar
  8. 8.
    Zhang H, Chen Y, Zheng C, Zhang D, He C (2015) Enhancement of the electrochemical performance of LiFePO4/carbon nanotubes composite electrode for Li-ion batteries. Ionics 21:1813–1818CrossRefGoogle Scholar
  9. 9.
    Dominko D, Gaberscek M, Drofenik J, Bele M, Pejovnik S, Jamnik J (2003) The role of carbon black distribution in cathodes for Li ion batteries. Electrochim Acta 119:770–773Google Scholar
  10. 10.
    Shi M, Kong L-B, Liu J-B, Yan K, Li J-J, Dai Y-H, Luo Y-C, Kang L (2016) A novel carbon source coated on C-LiFePO4 as a cathode material for lithium-ion batteries. Ionics 22:185–192CrossRefGoogle Scholar
  11. 11.
    Lv X-Y, Cui X-R, Long Y-F, Su J, Wen Y-X (2015) Optimization of titanium and vanadium co-doping in LiFePO4/C using response surface methodology. Ionics 21:2447–2455CrossRefGoogle Scholar
  12. 12.
    Cao W, Li J, Wu Z (2016) Cycle-life and degradation mechanism of LiFePO4-based lithium-ion batteries at room and elevated temperatures. Ionics 22:1791–1799CrossRefGoogle Scholar
  13. 13.
    Churikov A, Gribov A, Bobyl A, Kamzin A, Terukov E (2014) Mechanism of LiFePO4 solid-phase synthesis using iron (II) oxalate and ammonium dihydrophosphate as precursors. Ionics 20:1–13CrossRefGoogle Scholar
  14. 14.
    Rho YH, Nazar LF, Perry L, Ryan D (2007) Surface chemistry of LiFePO4 studied by Mössbauer and X-ray photoelectron spectroscopy and its effect on electrochemical properties. J Electrochem Soc 154:A283–A289CrossRefGoogle Scholar
  15. 15.
    Wang GX, Bewlay S, Needham SA, Liu HK, Liu RS, Drozd VA, Lee J-F, Chend JM (2006) Synthesis and characterization of LiFePO4 and LiTi0.01Fe0.99PO4 cathode materials. J Electrochem Soc 153:A25–A31CrossRefGoogle Scholar
  16. 16.
    Konarova M, Taniguchi I (2009) Physical and electrochemical properties of LiFePO4 nanoparticles synthesized by a combination of spray pyrolysis with wet ball-milling. J Power Sources 194:1029–1035CrossRefGoogle Scholar
  17. 17.
    Chen Z, Ren Y, Qin Y, Wu H, Ma S, Ren J, He X, Sune Y-K, Amine K (2011) Solid state synthesis of LiFePO4 studied by in situ high energy X-ray diffraction. J Mater Chem 21:5604CrossRefGoogle Scholar
  18. 18.
    Vaishnava P, Dixit A, Bazzi K, Sahana MB. Sudakar C, Nazri M, Naik V, Garg VK, Oliveira AC, Nazri GA, Naik R. Effect of iron-based impurities on the performance of nanostructured C-LiFePO4 cathode materials for Li-ion batteries. American Physical Society, APS March Meeting 2012, February 27–March 2, 2012, abstract #D33.001Google Scholar
  19. 19.
    Julien CM, Zaghib K, Mauger A, Groult H (2012) Enhanced electrochemical properties of LiFePO4 as positive electrode of Li-ion batteries for HEV application. Advances in Chemical Engineering and Science 2:321–329CrossRefGoogle Scholar
  20. 20.
    Uchida S, Yamagata M, Ishikawa M (2013) Novel rapid synthesis method of LiFePO4/C cathode material by high-frequency induction heating. J of Power Sources 243:481–487CrossRefGoogle Scholar
  21. 21.
    Zheng Х, Li J (2014) A review of research on hematite as anode material for lithium-ion batteries. Ionics 20:1651–1663CrossRefGoogle Scholar
  22. 22.
    Lisher EJ, Wilkinson C, Ericsson T, Haggstrom L, Lundgren L, Wappling R (1974) Studies of the magnetic structure of Fe3P. J Phys C Solid State Phys 7:1344–1352CrossRefGoogle Scholar
  23. 23.
    Ait-Salah A, Zaghib K, Mauger A, Gendron F, Julien CM (2006) Magnetic studies of the carbothermal effect on LiFePO4. Phys Status Solidi A 203:R1–R3CrossRefGoogle Scholar
  24. 24.
    Julien CM, Mauger A, Zaghib K (2011) Surface effects on electrochemical properties of nano-sized LiFePO4. J Mater Chem 21:9955–9968CrossRefGoogle Scholar
  25. 25.
    Zaghib K, Trottier J, Mauger A, Groult H, Julien CM (2013) Surface and bulk properties of LiFePO4 probed by the magnetic analysis. Int J Electrochem Sci 8:9000–9014Google Scholar
  26. 26.
    Kamzin AS, Bobyl AV, Ershenko EM, Terukov EI, Agafonov DV, Kudryavtsev EN (2013) Structure and electrochemical characteristics of LiFePO4 cathode materials for rechargeable Li-ion batteries. Phys Solid State 55:1385–1394CrossRefGoogle Scholar
  27. 27.
    Sharkov MD, Agafonov DV, Bobyl AV, Boiko ME, Ershenko EM, Konnikov SG, Pogrebitsky KJ, Zubavichus YV (2013) EXAFS analysis of LiFePO4 and Li4Ti5O12 samples produced via chemical technique. Appl Surf Sci 267:212–215CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Lahrs T (2009) Quality driven Phostech’s advanced LiFePO4 cathode, BATTERIES 2009 - The International Power Supply Conference and Exhibition, CannesGoogle Scholar
  30. 30.
    Churikov AV, Romanova VO (2012) An electrochemical study on the substituted spinel LiMn1.95Cr0.05O4. Ionics 18(9):837–844CrossRefGoogle Scholar
  31. 31.
    Ivanishchev AV, Churikov AV, Ivanishcheva IA, Ushakov AV (2016) Lithium diffusion in Li3V2(PO4)3-based electrodes: a joint analysis of electrochemical impedance, cyclic voltammetry, pulse chronoamperometry, and chronopotentiometry data. Ionics 22(4):483–501CrossRefGoogle Scholar
  32. 32.
    Chernyshov AA, Veligzhanin AA, Zubavichus YV (2009) Structural materials science end-station at the Kurchatov synchrotron radiation source: recent instrumentation upgrades and experimental results. Nucl Instr Meth Phys Res A 603:95CrossRefGoogle Scholar
  33. 33.
    Takayama T, Wey MY, Nishizawa T (1981) Effect of magnetic transition on the solubility of alloying elements in bcc iron and fcc cobalt. Trans Jpn Inst Met 22:315–325CrossRefGoogle Scholar
  34. 34.
    Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982CrossRefGoogle Scholar
  35. 35.
    Mavlyutov AM, Orlova TS, Murashkin MY, Valiev RZ, Kasatkin IA (2015) Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al–Mg–Si nanostructured under severe plastic deformation. Phys Solid State 57:2051–2058CrossRefGoogle Scholar
  36. 36.
    Grigoriev SV, Gubin OA, Kopitsa GP, Okorokov AI, Runov VV (1995) Preprint No. 2028, PIYaF RANGoogle Scholar
  37. 37.
    Runov VV, Ilyn DS, Runova MK, Radzhabov AK (2012) Study of ferromagnetic correlations caused by impurities in nonmagnetic materials by the method of small-angle scattering of polarized neutrons. JETP Lett 95:467–470CrossRefGoogle Scholar
  38. 38.
    Andreev VA, Ganzha GA, Ivanov EA, Ilyin DS, Kovalenko SN, Kolkhidashvili MR, Krivshich AG, Nadtochy AV, Runov VV, Soloveĭ VA, Shabanov GD (2010) Gas-filled position-sensitive detectors of thermal neutrons at the Konstantinov Petersburg Nuclear Physics Institute of the Russian Academy of Sciences. Phys Solid State 52:964CrossRefGoogle Scholar
  39. 39.
    Liu H-P, James P, Broddefalk A, Andersson Y, Granberg P, Eriksson O (1998) Structural and magnetic properties of (Fe1-xCox)3P compounds: experiment and theory. J Magnetism and Magnetic Materials 189:69–82CrossRefGoogle Scholar
  40. 40.
    Broddefalk A, Granberg P, Nordblad P, Liu H-P, Andersson Y (1998) Magnetocrystalline anisotropy of (Fe1−xCox)3P. J Appl Phys 83:6980–6982CrossRefGoogle Scholar
  41. 41.
    Che M and Ve’drine JC. Characterization of solid materials and heterogeneous catalysts—from structure to surface reactivity (2012) Copyright Wiley-VCH Verlag GmbH & Co. KGaA.Google Scholar
  42. 42.
    Bobyl AV, Gaevskii ME, Karmanenko SF, Kutt RN, Suris RA, Khrebtov IA, Tkachenko AD, Morosov AI (1997) Intrinsic microstrains and normal-phase flicker noise in YBa2Cu3O7 epitaxial films grown on various substrates. J Appl Phys 82:1274–1280CrossRefGoogle Scholar
  43. 43.
    Warren BE, Averbach BL (1950) The effect of cold-work distortion on X-ray patterns. J Appl Phys 21:595CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Eugeny Ershenko
    • 1
    Email author
  • Alexander Bobyl
    • 1
  • Mikhail Boiko
    • 1
  • Yan Zubavichus
    • 2
  • Vladimir Runov
    • 3
  • Mikhail Trenikhin
    • 4
  • Mikhail Sharkov
    • 1
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.National Research Center “Kurchatov Institute”MoscowRussia
  3. 3.Konstantinov Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”GatchinaRussia
  4. 4.Institute for Problems of Hydrocarbon Processing, Siberian BranchRussian Academy of SciencesOmskRussia

Personalised recommendations