Skip to main content
Log in

One-step solid-state synthesis of nanosized LiMn2O4 cathode material with power properties

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A simple one-step solid state reaction way of preparing nanosized LiMn2O4 powders with high-rate properties is investigated. Oxalic acid is used as a functional material to lose volatile gases during the process of calcining in order to control the morphology and change the particle size of materials. The results of X-ray diffraction and scanning electron microscopy show that particle size of materials decreases with the increase of the oxalic acid content. The electrochemical test results indicate that optimal LiMn2O4 particles (S0.5) is synthesized when the molar ratios of oxalic acid and total Mn source are 0.5:1. It also manifests that LiMn2O4 sample with middle size has the optimal electrochemical performance among five samples instead of the smallest LiMn2O4 sample. The obtained sample S0.5 with middle size exhibits a high initial discharge capacity of 125.8 mAh g−1 at 0.2C and 91.4% capacity retention over 100 cycles at 0.5C, superior to any one of other samples. In addition, when cycling at the high rate of 10C, the optimal S0.5 in this work could still reach a discharge capacity of 80.8 mAh g−1. This observation can be addressed to the fact that the middle size particles balance the contradictory of diffusion length in solid phase and particle agglomeration, which leads to perfect contacts with the conductive additive, considerable apparent Li-ion diffusion rate, and the optimal performance of S0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yuan Z, Zheng H, Wang S, Feng C (2016) J Mater Sci Mater Electron 27:5408–5414

    Article  CAS  Google Scholar 

  2. Jiang Q, Wang X, Zhang H (2016a) J Electron Mater 45:4350–4356

    Article  CAS  Google Scholar 

  3. Guo D, Chang Z, Tang H, Li B, Xu X, Yuan XZ et al (2014) Electrochim Acta 123:254–259

    Article  CAS  Google Scholar 

  4. Zhu X, Doan TNL, Yu Y, Tian Y, Sun KEK, Zhao H et al (2015) Ionics 22:1–6

    Google Scholar 

  5. Lee MJ, Lee S, Oh P (2014) Kim Y, Cho J. Nano Lett 14:993–999

    Article  CAS  Google Scholar 

  6. Ragavendran KR, Xia H, Yang G, Vasudevan D, Emmanuel B, Sherwood D et al (2014a) Phys Chem Chem Phys 16:2553–2560

    Article  CAS  Google Scholar 

  7. Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV. Nat. Mater

  8. Jiang J, Liu Q, Xu L, Xu J, Du J, He X et al (2016b) Journal of Nanoscience & Nanotechnology 16:12640–12643

    Article  CAS  Google Scholar 

  9. Bruck AM, Cama CA, Gannett CN, Marschilok AC, Takeuchi ES, Takeuchi KJ (2015) ChemInform 47:26–40

    Google Scholar 

  10. Gallagher KG, Nelson PA, Dees DW (2011) J Power Sources 196:2289–2297

    Article  CAS  Google Scholar 

  11. Park SH, Sato Y, Kim J, Lee YS (2007) Materials Chemistry & Physics 102:225–230

    Article  CAS  Google Scholar 

  12. Thirunakaran R, Kim T, Yoon WS (2015) J Sol-Gel Sci Technol 73:62–71

    Article  CAS  Google Scholar 

  13. Yu W, Cao C, Zhang J, Lin W, Ma X, Xu X (2016) ACS Appl Mater Interfaces:8

  14. Jiang Q, Xu L, Ma Z, Zhang H (2015) Applied Physics A 119:1069–1074

    Article  CAS  Google Scholar 

  15. Christiansen TL, Bojesen E, Søndergaard M, Birgisson S, Becker-Christensen J, Bo BI (2016) CrystEngComm 18:1996–2004

    Article  CAS  Google Scholar 

  16. Wei Luo XW, Colin Meyers, Nick Wannenmacher, Weekit Sirisaksoontorn, Michael M. Lerner& Xiulei Ji (2013) Scientific Reports

  17. Huang Y, Li J, Jia D (2013) J Nanopart Res 6:533–538

    Article  Google Scholar 

  18. Caballero A, Cruz M, Hernán L, Melero M, Morales J, Castellón ER (2005) J Power Sources 150:192–201

    Article  CAS  Google Scholar 

  19. Zhu H-L, Chen Z-Y, Ji S, Linkov V (2008) Solid State Ionics 179:1788–1793

    Article  CAS  Google Scholar 

  20. OGIHARA T, AIKIYO H, OGATA N, KATAYAMA K, AZUMA Y, OKABE H et al (2002) Advanced Powder Technol 13:437–445

    Article  Google Scholar 

  21. Mercier TL, Gaubicher J, Bermejo E, Chabre Y, Quarton M (1998) J Mater Chem 9:567–570

    Article  Google Scholar 

  22. Wolska E (1996) Defect and Diffusion Forum 134-135:89

    Article  CAS  Google Scholar 

  23. Piszora P, Darul J, Nowicki W, Wolska E (2004) Journal of Alloys & Compounds 362:231–235

    Article  CAS  Google Scholar 

  24. Tang W, Hou Y, Wang F, Liu L, Wu Y, Zhu K (2013) Nano Lett 13:2036–2040

    Article  CAS  Google Scholar 

  25. Ragavendran K, Hui X, Gu X, Sherwood D, Emmanuel B, Arof A (2014b) RSC Adv 4:60106–60111

    Article  CAS  Google Scholar 

  26. Smigelskas AD, Kirkendall EO (1947) Zinc Diffusion in Alpha Brass

  27. Wang Y, Chen L, Wang Y, Xia Y (2015) Electrochim Acta 173:178–183

    Article  CAS  Google Scholar 

  28. Eriksson T, Andersson AM, Bishop AG, Gejke C, Tr G, Thomas JO (2002) J Electrochem Soc 149:A69

    Article  CAS  Google Scholar 

  29. Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M et al (2007) J Power Sources 165:491–499

    Article  CAS  Google Scholar 

  30. Carroll KJ, Yang M-C, Veith GM, Dudney NJ, Meng Y (2012) Electrochem Solid-State Lett 15:A72

    Article  CAS  Google Scholar 

  31. Sun X, Li J, Shi C, Wang Z, Liu E, He C et al (2012) J Power Sources 220:264–268

    Article  CAS  Google Scholar 

  32. Zheng C-H, Liu X, Wu Z-F, Chen Z-D, Fang D-L (2013) Electrochim Acta 111:192–199

    Article  CAS  Google Scholar 

  33. Luo W (2015) Journal of Alloys & Compounds 636:24–28

    Article  CAS  Google Scholar 

  34. Xiao L, Guo Y, Qu D, Deng B, Liu H, Tang D (2013) J Power Sources 225:286–292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 21406100 and 51502124) and the Foundation for Innovation Groups of Basic Research in Gansu Province (No. 1606RJIA322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyou Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Lei, D., Xue, Y. et al. One-step solid-state synthesis of nanosized LiMn2O4 cathode material with power properties. Ionics 23, 1979–1984 (2017). https://doi.org/10.1007/s11581-017-2060-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2060-7

Keywords

Navigation