Skip to main content
Log in

Cobalt imidazoledicarboxylate coordination complex microspheres: stable intercalation materials for lithium and sodium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A simple and versatile method for preparation of cobalt 4,5-imidazoledicarboxylate microspheres is developed. The cobalt 4,5-imidazoledicarboxylate complex is a kind of stable intercalation materials for lithium- and sodium-ion batteries. When tested as an anode material for lithium-ion batteries, the coordination complex microspheres based composite electrode delivers a second discharge capacity of 595.4 mAh g−1 at a current density of 1 Ah g−1. A reversible capacity of 416.1 mAh g−1 remained after 143 cycles, while a reversible capacity of 259.9 mAh g−1 remained after 500 cycles at a current density of 1.5 A g−1. In addition, it can also serve as stable anode materials for sodium-ion batteries. Research based on the topics would shed some light on the discovery of new alternative intercalation materials to graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cheng FY, Liang J, Tao ZL et al (2012) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715

    Article  Google Scholar 

  2. Fei HL, Li ZW, Feng WJ et al (2015) Stable anode performance of vanadium oxide hydrate semi-microspheres and their graphene based composite microspheres in sodium-ion batteries. Dalton Trans 44:146–150

    Article  CAS  Google Scholar 

  3. Tarascon JM (2010) Key challenges in future Li-battery research. Phil Trans R Soc A 368:3227–3241

    Article  Google Scholar 

  4. Hu YX, Zhang TR, Cheng FY et al (2015) Recycling application of Li–MnO2 batteries as rechargeable lithium–air batteries. Angew Chem Int Ed 54:4338–4343

    Article  CAS  Google Scholar 

  5. Senthil Kumar YR, Nithya C, Gopukumar S et al (2014) Diamondoid-structured Cu-dicarboxylate-based metal-organic frameworks as high-capacity anodes for lithium-ion storage. Energy Tech 2:921–927

    Article  CAS  Google Scholar 

  6. Wang LP, Mou CX, Sun Y et al (2015) Structure-property of metal organic frameworks calcium terephthalates anodes for lithium-ion batteries. Electrochim Acta 173:235–241

    Article  CAS  Google Scholar 

  7. Liu Q, Yu LL, Wang Y (2013) Manganese-based layered coordination polymer: synthesis, structural characterization, magnetic property, and electrochemical performance in lithium-ion batteries. Inorg Chem 52:2817–2822

    Article  CAS  Google Scholar 

  8. Lee HH, Park Y, Kim SH (2015) Mechanistic studies of transition metal-terephthalate coordination complexes upon electrochemical lithiation and delithiation. Adv Funct Mater 25:4859–4866

    Article  CAS  Google Scholar 

  9. Maiti S, Pramanik A, Manju U et al (2015) Reversible lithium storage in manganese 1,3,5-benzenetricarboxylate metal-organic framework with high capacity and rate performance. ACS Appl Mater Interf 7:16357–16363

    Article  CAS  Google Scholar 

  10. Li C, Lou XB, Shen M et al (2016) High anodic performance of Co 1,3,5-benzenetricarboxylate coordination polymers for Li-ion battery. ACS Appl Mater Inter 8:15352–15360

    Article  CAS  Google Scholar 

  11. Hu XS, Hu HP, Li C et al (2016) Cobalt-based metal organic framework with superior lithium anodic performance. J Solid State Chem 242:71–76

    Article  CAS  Google Scholar 

  12. Shi CD, Xia QH, Xue X et al Synthesis of cobalt-based layered coordination polymer nanosheets and their application in lithium-ion batteries as anode materials. RSC Adv 6:4442–4447

  13. Gou L, Ahoy LM, Shi X et al (2014) One-pot synthesis of a metal-organic framework as an anode for Li-ion batteries with improved capacity and cycling stability. J Solid State Chem 210:121–124

    Article  CAS  Google Scholar 

  14. Mao Y, Kong QY, Guo BK et al (2013) Polypyrrole-NiO composite as high-performance lithium storage material. Electrochim Acta 105:162–169

    Article  CAS  Google Scholar 

  15. Mao Y, Kong QY, Shen L et al (2014) Polythiophene coordination complexes as high performance lithium storage materials. J Power Sources 248:343–347

    Article  CAS  Google Scholar 

  16. Mao Y, Duan H, Xu B et al (2011) Polypyrrole-iron-oxygen coordination complex as high performance lithium storage material. Energy Environ Sci 4:3442–3447

    Article  CAS  Google Scholar 

  17. Guo BK, Kong QY, Zhu Y et al (2011) Electrochemically fabricated polypyrrole-cobalt-oxygen coordination complex as high-performance lithium-storage materials. Chem Eur J 17:14878–14884

    Article  CAS  Google Scholar 

  18. Fei HL, Lin YQ (2016) Zinc pyridinedicarboxylate micro-nanostructures: promising anode materials for lithium-ion batteries with excellent cycling performance. J Colloid Interf Sci 481:256–262

    Article  CAS  Google Scholar 

  19. An T, Wang YH, Tang J et al (2015) A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage. J Colloid Interf Sci 445:320–325

    Article  CAS  Google Scholar 

  20. Fei HL, Liu X, Li ZW (2015) Hollow cobalt coordination polymer microspheres: a promising anode material for lithium-ion batteries with high performance. Chem Eng J 281:453–458

    Article  CAS  Google Scholar 

  21. Wang CF, Dai GL, Jin ZN (2013) Rational design of cobalt molecular square complexes with exact coplanar corners by bis-chelating 4,5-imidazoledicarboxylate bridges. Inorg Chim Acta 394:255–258

    Article  CAS  Google Scholar 

  22. Chen JX, Liu BH (2012) Construction of cobalt-imidazole-based dicarboxylate complexes with topological diversity: from metal-organic square to one-dimensional coordination polymer. Inorg Chem Commun 22:170–173

    Article  Google Scholar 

  23. Luo ZR, Zhuang JC, Wu QL et al (2011) Two cobalt(II) complexes based on 2-propyl-4,5-imidazoledicarboxylic acid: syntheses, crystal structures, and properties. J Coord Chem 64:1054–1062

    Article  CAS  Google Scholar 

  24. Premkumar T, Govindarajan S, Pan WP et al (2003) Preparation and thermal behaviour of transition metal complexes of 4,5-imidazoledicarboxylic acid. J Thermal Anal Calor 74:325–333

    Article  CAS  Google Scholar 

  25. Fei HL, Li H, Li ZW et al (2014) Facile synthesis of graphite nitrate-like ammonium vanadium bronzes and their graphene composites for sodium-ion battery cathodes. Dalton Trans 43:16522–16527

    Article  CAS  Google Scholar 

  26. Fei HL, Wei MD (2011) Facile synthesis of hierarchical nanostructured rutile titania for lithium-ion battery. Electrochim Acta 56:6997–7004

    Article  CAS  Google Scholar 

  27. Fei HL, Shen ZR, Wang JG et al (2008) Novel bi-cation intercalated vanadium bronze nano-structures for stable and high capacity cathode materials. Electrochem Commun 10:1541–1544

    Article  CAS  Google Scholar 

  28. Yan B, Li XF, Bai ZM et al (2016) Crumpled reduced graphene oxide conformally encapsulated hollow V2O5 nano/microsphere achieving brilliant lithium storage performance. Nano Energy 24:32–44

    Article  CAS  Google Scholar 

  29. Chen XC, Kierzek K, Wilgosa K et al (2012) New easy way preparation of core/shell structured SnO2@carbonspheres and application for lithium-ion batteries. J Power Sources 216:475–481

    Article  CAS  Google Scholar 

  30. Wu MB, Liu J, Tan MH et al (2014) Facile hydrothermal synthesis of SnO2/C microspheres and double layered core-shell SnO2 microspheres as anode materials for Li-ion secondary batteries. RSC Adv 4:25189–25194

    Article  CAS  Google Scholar 

  31. Li XY, Gu HB, Liu JR et al (2015) Multi-walled carbon nanotubes composited with nanomagnetite for anodes in lithium-on batteries. RSC Adv 5:7237–7244

    Article  CAS  Google Scholar 

  32. Cao HL, Wang XZ, Gu HB et al (2015) Carbon coated manganese monoxide octahedron negative-electrode for lithium-ion batteries with enhanced performance. RSC Adv 5:34566–34571

    Article  CAS  Google Scholar 

  33. Ding KQ, Gu HB, Zheng CB et al (2014) Octagonal prism shaped lithium ironphosphate composite particles as positive electrode materials forechargeable lithium-ion battery. Electrochim Acta 146:585–590

    Article  CAS  Google Scholar 

  34. Su X, Wu QL, Zhan X et al (2012) Advanced titania nanostructures and composites for lithium ion battery. J Mater Sci 47:2519–2534

    Article  CAS  Google Scholar 

  35. Zhang GQ, Li WJ, Yang HW et al (2013) Influence of preparation conditions on the properties of lithium titanate fabricated by a solid-state method. J New Mater Electrochem Sys 16(1):25–32

    CAS  Google Scholar 

  36. Zhao Y, Li XF, Bai ZM et al (2016) Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater 6:1502175–1502193

    Article  Google Scholar 

  37. Fan LL, Li XF, Yan B et al (2016) Controlled SnO2 crystallinity effectively dominating sodium storage performance. Adv Energy Mater 6:1502057–1502069

    Article  Google Scholar 

  38. Deng JH, Zhong DC, Luo XZ et al (2013) Syntheses, crystal structures and luminescent investigations of cobalt(II) and zinc(II) complexes with 2-propyl-4,5-dicarboxylate-imidazole (H3PIDC). Inorg Chem Commun 36:249–252

    Article  CAS  Google Scholar 

  39. Ghosh A, Rao KP, Sanguramath RA et al (2009) Two- and three-dimensional lead-1H-imidazole-4,5-dicarboxylates. J Molecular Struct 927(2009):37–42

    Article  CAS  Google Scholar 

  40. Che HW, Liu AF, Liang SX et al (2015) Facile synthesis of three-dimensional hierarchical Co3O4 peony-like microspheres and their lithium storage performance. Superlattice Microst 83:538–548

    Article  CAS  Google Scholar 

  41. Li JF, Wang JZ, Wexler D et al (2015) Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. J Mater Chem A 1:15292–15299

    Article  Google Scholar 

  42. Yu L, Yang JF, Lou XW et al (2016) Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angew Chem Int Ed 55:13422–13425

    Article  CAS  Google Scholar 

  43. Chen YM, Yu L, Lou XW et al (2016) Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew Chem Int Ed 55:5990–5993

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (grant no. 51204058) and the open project in Key Lab Adv. Energy Mat. Chem. (Nankai University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Fei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, H., Lin, Y. & Xu, T. Cobalt imidazoledicarboxylate coordination complex microspheres: stable intercalation materials for lithium and sodium-ion batteries. Ionics 23, 1949–1954 (2017). https://doi.org/10.1007/s11581-017-2033-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2033-x

Keywords

Navigation