Skip to main content
Log in

Synthesis, refinement of the structure, and AC conductivity behavior of sodium lithium orthonavadates

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The Na x Li1-x CdVO4 (x = 0.5, 1) orthovanadates were prepared using a solid-state reaction method. The x-ray diffraction patterns (XRDP) of both materials reveal the formation of the Na2CrO4 structure. Vibrational study confirms the existence of [VO4]3− group. Electrical measurements of our compounds have been investigated using complex impedance spectroscopy (CIS) in the frequency and temperature range 209 Hz–1 MHz and 589–703 K, respectively. Nyquist plots reveal the presence of tow contributions, an equivalent circuit was proposed. DC conductivity shows electrical conduction in the material as a thermally activated process. The AC conductivity is explained using the non-overlapping small polaron tunneling (NSPT) conduction mechanism. A relationship between crystal structure and ionic conductivity was established and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pathak N, Gupta SK, Prince A, Kadam RM, Natarajan V (2014) J Mol Struct 121:1056–1057

    Google Scholar 

  2. Kazakopoulos A, Kalogirou O (2008) Solid State Ionics 179:936–940

    Article  CAS  Google Scholar 

  3. Dong W, Guo Y, Zhang Y, Li H, Liu H (2014) Int J Hydrog Energy 39:5569–5574

    Article  CAS  Google Scholar 

  4. Wang Y, Xu X, Cao C, Shi C, Mo W, Zhu H (2013) J Power Sources 242:230–235

    Article  CAS  Google Scholar 

  5. Zhu XJ, Liu YX, Geng LM, Chen LB (2008) J Power Sources 184:578–582

    Article  CAS  Google Scholar 

  6. Fang G, Zhou J, Liang C, Cai Y, Pan A, Tan X, Tang Y, Liang S (2016) J Mater Chem A 4:14408–14415

    Article  CAS  Google Scholar 

  7. Cai Y, Zhou J, Fang G, Cai G, Pan A, Liang S (2016) J Power Sources 328:241–249

    Article  CAS  Google Scholar 

  8. Fanga G, Lianga C, Zhoua J, Caia G, Liang S, Liu J (2016) Electrochim Acta 218:199–207

    Article  Google Scholar 

  9. Kazakopoulos A, Sarafidis C, Chrissafis K, Kalogirou O (2008) Solid State Ionics 179:1980–1985

    Article  CAS  Google Scholar 

  10. Prakash D, Masuda Y, Sanjeeviraja C (2012) Ionics 18:31–37

    Article  CAS  Google Scholar 

  11. Ben Yahia H, Gaudin E, Boulahya K, Darriet J, Son WJ, Whangbo MH (2010) Inorg Chem 49:8578–8582

    Article  CAS  Google Scholar 

  12. Lee DG, Kesavulu CR, Yi SS, Cho S, Jang K, Kim SH, Jeong JH (2014) J Nanosci Nanotechnol 14:5877–5880

    Article  CAS  Google Scholar 

  13. Gaudin E, Ben yahya H, Darriet J (2005) Phosphorus Res Bull 19:19–24

    Article  CAS  Google Scholar 

  14. Ben Yahia H, Gaudin E, Darriet J (2005) Inorg Chem 44:3087–3093

    Article  CAS  Google Scholar 

  15. Moller A, Jainski J (2008) Anorg Allg Chem 634:1669–1672

    Article  Google Scholar 

  16. Kumar A, Kumari P, Das A, Dwivedi GD, Shahi P, Shukla KK, Ghosh AK, Nigam AK, Chattopadhyay KK, Chatterjee S (2013) J Solid State Chem 208:120–126

    Article  CAS  Google Scholar 

  17. Azroura M, El Ammaria L, Fur YL, Elouadi B (2000) Mater Res Bull 35:263–270

    Article  Google Scholar 

  18. Ijdo DJW (1982) D Acta Crystlographica B38:923–925

    Article  CAS  Google Scholar 

  19. Hajlaoui S, Chaabane I, Oueslati A, Guidara K (2013) Solid State Sci 25:134–142

    Article  CAS  Google Scholar 

  20. Forst RL, Xi Y, Lopez A, Correa L, Scholz R (2014) Spectrochim Acta A Mol Biomol Spectrosc 122:252–256

    Article  Google Scholar 

  21. Frost RL, Williams PA, Kloprogge JT, Leverett P (2001) Raman Spectroscopy 32:906–911

    Article  CAS  Google Scholar 

  22. Liu JB, Wang H, Wang S, Yan H (2003) Mater Sci Eng B 104:36–39

    Article  Google Scholar 

  23. Frost RL, Henry DA, Weier ML, Martens W (2006) J Raman Spectrosc 37:722–732

    Article  CAS  Google Scholar 

  24. Frost RL, Crane M, Williams PA, Kloprogge JT (2003) J Raman Spectrosc 34:214–220

    Article  CAS  Google Scholar 

  25. Errandonea D, Gomis O, Domene BG, Porres JP, Katari V, Achary SN, Tyagi AK, Popesc C (2013) Inorg Chem 52:12790–12798

    Article  CAS  Google Scholar 

  26. Orilukas A, Dindune A, Kanepe Z, Ronis J, Kazakevicius E, Kezionis A (2003) Solide States Ionics 157:177–181

    Article  Google Scholar 

  27. Barsoukov E, Ross J (2005) Macdonald, impedance spectroscopy theory, experiment and applications, 2nd edn. Wiley, New York, p. 14

    Book  Google Scholar 

  28. Ram M (2011) J Alloys Compd 509:5688–5691

    Article  CAS  Google Scholar 

  29. Ram M (2011) J Alloys Compd 509:9659–9662

    Article  CAS  Google Scholar 

  30. Louati B, Guidara K (2011) Ionics 17:633–640

    Article  CAS  Google Scholar 

  31. Li YM, Liao RH, Jiang XP, Zhang YP (2009) J Alloys Compd 484:961–965

    Article  CAS  Google Scholar 

  32. Ben Said R, Louati B, Guidara K, Kamoun S (2014) Ionics 20:1071–1078

    Article  CAS  Google Scholar 

  33. Rissouli K, Benkhouja K, Barrado JRR, Julien C (2003) Mater Sci Eng B98:185–189

    Article  CAS  Google Scholar 

  34. Dridi N, Boukhari A, Reau JM, Arbib E, Holt EM (2001) Mater Lett 47:212–218

    Article  CAS  Google Scholar 

  35. Patwe SJ, Achary SN, Tyagi AK (2009) J Mater Res 24:3551–3558

    Article  CAS  Google Scholar 

  36. Katari V, Patwe SJ, Achary SN, Tyagi AK (2013) Am Ceramic Soc 96:166–173

    Article  CAS  Google Scholar 

  37. Sharma P, Kanchan DK, Pant M, Jayswal MS, Gondaliya N (2011) New J Glass Ceram 1:112–118

    Article  CAS  Google Scholar 

  38. Louati B, Hlel F, Guidara K (2009) J Alloys Compd 486:299–303

    Article  CAS  Google Scholar 

  39. Mariappan CR, Govindaraj G, Ramya L, Hariharan S (2005) Mater Res Bull 40:610–618

    Article  CAS  Google Scholar 

  40. Louati B, Guidara K, Gargouri M (2009) J Alloys Compd 472:347–351

    Article  CAS  Google Scholar 

  41. Ben Said R, Louati B, Guidara K (2014) Ionics 20:703–711

    Article  Google Scholar 

  42. Roling B, Happe A, Funke K, Ingram MD (1997) Phys Rev Lett 78:2160–2163

    Article  CAS  Google Scholar 

  43. Song CH, Kim M, Choi HW, Yang YS (2009) J Korean Phys Soc 54:891–895

    Article  CAS  Google Scholar 

  44. Ghosh A, Pan A (2000) Phys Rev Lett 84:2188–2190

    Article  CAS  Google Scholar 

  45. Elliott SR (2006) Adv Phys 36:135–218

    Article  Google Scholar 

  46. Hegab NA, El-Mallah HM (2009) Acta Phys Pol A 116:1048–1052

    Article  CAS  Google Scholar 

  47. Kahouli A, Sylvestre A, Jomni F, Yangui B, Legrand J (2011) J Phys Chem A 116:1051–1058

    Article  Google Scholar 

  48. Ben Said R, Louati B, Guidara K (2016) J Alloys Compd 672:521–528

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Enneffati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enneffati, M., Louati, B. & Guidara, K. Synthesis, refinement of the structure, and AC conductivity behavior of sodium lithium orthonavadates. Ionics 23, 1115–1129 (2017). https://doi.org/10.1007/s11581-016-1907-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1907-7

Keywords

Navigation