Skip to main content

Advertisement

Log in

Promising nitrogen-doped porous nanosheets carbon derived from pomegranate husk as advanced electrode materials for supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nitrogen-doped porous activated carbons (N-PHACs) have been successfully synthesized using pomegranate husk as carbon precursor via ZnCl2-activation carbonization and subsequent urea-assisted hydrothermal nitrogen-doping method. The obtained N-PHACs possesses abundant mesoporous structure, high specific surface area (up to 1754.8 m2 g−1), pore volume (1.05 cm3 g−1), and nitrogen-doping content (4.51 wt%). Besides, the N-PHACs-based material showed a high specific capacitance of 254 F g−1 at a current density of 0.5 A g−1 and excellent rate performance (73% capacitance retention ratio even at 20 A g−1) in 2 M KOH aqueous electrolyte, which is attributed to the contribution of double-layer capacitance and pseudocapacitance. The assembled N-PHACs-based symmetric capacitor with a wide operating voltage range of 0–1.8 V exhibits a maximum energy density of 15.3 Wh kg−1 at a power density of 225 W kg−1 and superior cycle stability (only 6% loss after 5000 cycles) in 0.5 M Na2SO4 aqueous electrolyte. These exciting results suggest that the novel N-doping porous carbon material prepared by a green and low-cost design strategy has a potential application as high-performance electrode materials for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Peng X, Peng L, Wu C, Xie Y (2014) Two dimensional nanomaterials for flexible supercapacitors. Chem Soc Rev 43:3303–3323

    Article  CAS  Google Scholar 

  2. Beidaghi M, Gogotsi Y (2014) Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ Sci 7:867–884

    Article  CAS  Google Scholar 

  3. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  4. Bhattacharjya D, Yu JS (2014) Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor. J Power Sources 262:224–231

    Article  CAS  Google Scholar 

  5. Jiang H, Lee PS, Li CZ (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6:41–53

    Article  CAS  Google Scholar 

  6. Nagamuthu S, Vijayakumar S, Muralidharan G (2013) Synthesis of Mn3O4/amorphous carbon nanoparticles as electrode material for high performance supercapacitor applications. Energy Fuel 27:3508–3515

    Article  CAS  Google Scholar 

  7. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  8. Chen H, Zhou S, Chen M, Wu L (2012) Reduced graphene oxide-MnO2 hollow sphere hybrid nanostructures as high-performance electrochemical capacitors. J Mater Chem 22:25207–25216

    Article  CAS  Google Scholar 

  9. Chen H, Zhou S, Wu L (2014) Porous nickel hydroxide–manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Appl Mater Interfaces 6:8621–8630

    Article  CAS  Google Scholar 

  10. Wang J, Shen LF, Ding B, Nie P, Deng HF, Dou H, Zhang XG (2014) Fabrication of porous carbon spheres for high-performance electrochemical capacitors. RSC Adv 4:7538–7544

    Article  CAS  Google Scholar 

  11. Kalupson J, Ma DH, Randall CA, Rajagopalan R, Adu K (2014) Ultrahigh-power flexible electrochemical capacitors using binder-free single-walled carbon nanotube electrodes and hydrogel membranes. J Phys Chem C 118:2943–2952

    Article  CAS  Google Scholar 

  12. Zang XB, Li PX, Chen Q, Wang KL, Wei JQ, Wu DH, Zhu HW (2014) Evaluation of layer-by-layer graphene structures as supercapacitor electrode materials. J Appl Phys 115:024305

    Article  Google Scholar 

  13. Liu NP, Shen J, Liu D (2013) Activated high specific surface area carbon aerogels for EDLCs. Microporous Mesoporous Mater 167:176–181

    Article  CAS  Google Scholar 

  14. Gao PC, Tsai WY, Daffos B, Taberna PL, Pérez CR, Gogotsi Y, Simon P, Favier F (2015) Graphene-like carbide derived carbon for high-power supercapacitors. Nano Energy 12:197–206

    Article  CAS  Google Scholar 

  15. Zhu JJ, Yu LL, Zhao JT (2014) 3D network mesoporous beta-manganese dioxide: template-free synthesis and supercapacitive performance. J Power Sources 270:411–417

    Article  CAS  Google Scholar 

  16. Wang Q, Yan J, Xiao Y, Wei T, Fan ZJ, Zhang ML, Jing XY (2013) Interconnected porous and nitrogen-doped carbon network for supercapacitors with high rate capability and energy density. Electrochim Acta 114:165–172

    Article  CAS  Google Scholar 

  17. Hao P, Zhao ZH, Tian J, Li HD, Sang YH, Yu GW, Cai HQ, Liu H, Wong CP, Umar A (2014) Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6:12120–12129

    Article  CAS  Google Scholar 

  18. Nowicki P, Kazmierczak J, Sawicka K, Pietrzak R (2015) Nitrogen-enriched activated carbons prepared by the activation of coniferous tree sawdust and their application in the removal of nitrogen dioxide. Int J Environ Sci Technol 12:2233–2244

    Article  CAS  Google Scholar 

  19. Ulaganathan M, Jain A, Aravindan V, Jayaraman S, Ling WC, Lim TM, Srinivasan MP, Yan Q, Madhavi S (2015) Bio-mass derived mesoporous carbon as superior electrode in all vanadium redox flow battery with multicouple reactions. J Power Sources 274:846–850

    Article  CAS  Google Scholar 

  20. Long CL, Chen X, Jiang LL, Zhi LJ, Fan ZJ (2015) Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy 12:141–151

    Article  CAS  Google Scholar 

  21. Redondo E, Carretero-González J, Goikolea E, Ségalini J, Mysyk R (2015) Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits. Electrochim Acta 160:178–184

    Article  CAS  Google Scholar 

  22. Wang HL, Xu ZW, Kohandehghan A, Li Z, Cui K, Tan XH, Stephenson TJ, King’ondu CK, Holt CMB, Olsen BC, Tak JK, Harfield D, Anyia AO, Mitlin D (2013) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7:5131–5141

    Article  CAS  Google Scholar 

  23. Li X, Xing W, Zhuo S, Zhou J, Li F, Qiao SZ, Lu GQ (2011) Preparation of capacitor’s electrode from sunflower seed shell. Bioresour Technol 102:1118–1123

    Article  CAS  Google Scholar 

  24. Kumagai S, Sato M, Tashima D (2013) Electrical double-layer capacitance of micro- and mesoporous activated carbon prepared from rice husk and beet sugar. Electrochim Acta 114:617–626

    Article  CAS  Google Scholar 

  25. Aviram M, Volkova N, Coleman R, Dreher M, Reddy MK, Ferreira D, Rosenblat M (2008) Pomegranate phenolics from the peels, arils, and flowers are antiatherogenic: studies in vivo in atherosclerotic apolipoprotein E-deficient (E0) mice and in vitro in cultured macrophages and lipoproteins. J Agric Food Chem 56:1148–1157

    Article  CAS  Google Scholar 

  26. Seredych M, Hulicova-Jurcakova D, Lu GQ, Bandosz TJ (2008) Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46:1475–1488

    Article  CAS  Google Scholar 

  27. Peng H, Ma GF, Sun KJ, Zhang ZG, Yang Q, Lei ZQ (2016) Nitrogen-doped interconnected carbon nanosheets from pomelo mesocarps for high performance supercapacitors. Electrochim Acta 190:862–871

    Article  CAS  Google Scholar 

  28. Hou JH, Cao CB, Idrees F, Ma XL (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9:2556–2564

    Article  CAS  Google Scholar 

  29. Ling Z, Wang ZY, Zhang MD, Yu C, Wang G, Dong YF, Liu SH, Wang YW, Qiu JS (2016) Sustainable synthesis and assembly of biomass-derived B/N Co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv Funct Mater 26:111–119

    Article  CAS  Google Scholar 

  30. Peng H, Ma GF, Sun KJ, Mu JJ, Zhang ZG, Lei ZQ (2014) Facile synthesis of poly(p-phenylenediamine)-derived three-dimensional porous nitrogen-doped carbon networks for high performance supercapacitors. J Phys Chem C 118:29507–29516

    Article  CAS  Google Scholar 

  31. Guo HL, Gao QM (2009) Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. J Power Sources 186:551–556

    Article  CAS  Google Scholar 

  32. Li MJ, Liu CM, Cao HB, Zhao H, Zhang Y, Fan ZJ (2014) KOH self-templating synthesis of three-dimensional hierarchical porous carbon materials for high performance supercapacitors. J Mater Chem A 2:14844–14851

    Article  CAS  Google Scholar 

  33. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nm. Science 313:1760–1763

    Article  CAS  Google Scholar 

  34. Li YY, Li ZS, Shen PK (2013) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 25:2474–2480

    Article  CAS  Google Scholar 

  35. Su PP, Jiang L, Zhao J, Yan JW, Li C, Yang QH (2012) Mesoporous graphitic carbon nanodisks fabricated via catalytic carbonization of coordination polymers. Chem Commun 48:8769–8771

    Article  CAS  Google Scholar 

  36. He ZW, Lü QF, Lin QL (2013) Fabrication, characterization and application of nitrogen-containing carbon nanospheres obtained by pyrolysis of lignosulfonate/poly(2-ethylaniline). Bioresour Technol 127:66–71

    Article  CAS  Google Scholar 

  37. Usachov D, Vilkov O, Gruneis A, Haberer D, Fedorov A, Adamchuk VK, Preobrajenski AB, Dudin P, Barinov A, Oehzelt M, Laubschat C, Vyalikh DV (2011) Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett 11:5401–5407

    Article  CAS  Google Scholar 

  38. Su FB, Poh CK, Chen JS, Xu GW, Wang D, Li Q, Lin JY, Lou XW (2011) Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ Sci 4:717–724

    Article  CAS  Google Scholar 

  39. Hao L, Li XL, Zhi LJ (2013) Carbonaceous electrode materials for supercapacitors. Adv Mater 25:3899–3904

    Article  CAS  Google Scholar 

  40. Demarconnay L, Raymundo-piñero E, Béguin F (2010) A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution. Electrochem Commun 12:1275–1278

    Article  CAS  Google Scholar 

  41. Wang Q, Yan J, Wang YB, Wei T, Zhang ML, Jing XY, Fan ZJ (2014) Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67:119–127

    Article  CAS  Google Scholar 

  42. Jiang LL, Sheng LZ, Long CL, Wei T, Fan ZJ (2015) Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Adv Energy Mater. doi:10.1002/aenm.201500771

    Google Scholar 

  43. Bichat MP, Raymundo-piñero E, Béguin F (2010) High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 48:4351–4361

    Article  CAS  Google Scholar 

  44. Yan J, Wang Q, Lin CP, Wei T, Fan ZJ (2014) Interconnected frameworks with a sandwiched porous carbon layer/graphene hybrids for supercapacitors with high gravimetric and volumetric performances. Adv Energy Mater. doi:10.1002/aenm.201400500

    Google Scholar 

  45. Ma GF, Guo DY, Sun KJ, Peng H, Yang Q, Zhou XZ, Zhao XL, Lei ZQ (2015) Cotton-based porous activated carbon with a large specific surface area as an electrode material for high-performance supercapacitors. RSC Adv 5:64704–64710

    Article  CAS  Google Scholar 

  46. Wang Q, Yan J, Wang YB, Ning GQ, Fan ZJ, Wei T, Cheng J, Zhang ML, Jing XY (2013) Template synthesis of hollow carbon spheres anchored on carbon nanotubes for high rate performance supercapacitors. Carbon 52:209–218

    Article  CAS  Google Scholar 

  47. Guo Y, Shi ZQ, Chen MM, Wang CY (2014) Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors. J Power Sources 252:235–243

    Article  CAS  Google Scholar 

  48. Wang Q, Yan J, Wei T, Feng J, Ren YM, Fan ZJ, Zhang ML, Jing XY (2013) Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors. Carbon 60:481–487

    Article  CAS  Google Scholar 

  49. Tan YM, Xu CF, Chen GX, Liu ZH, Ma M, Xie QJ, Zheng NF, Yao SZ (2013) Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor. ACS Appl Mater Interfaces 5:2241–2248

    Article  CAS  Google Scholar 

  50. Fan Y, Liu PF, Zhu B, Chen SF, Yao KL, Han R (2015) Microporous carbon derived from acacia gum with tuned porosity for high-performance electrochemical capacitors. Int J Hydrog Energy 40:6188–6196

    Article  CAS  Google Scholar 

  51. Wei XJ, Gou H, Mo ZL, Guo RB, Hu R, Wang YW (2016) Hierarchically structured nitrogen-doped carbon for advanced supercapacitor electrode materials. Ionics. doi:10.1007/s11581-016-1635-z

    Google Scholar 

  52. Ding B, Wang J, Wang Y, Chang Z, Pang G, Dou H, Zhang XG (2016) A two-step etching route to ultrathin carbon nanosheets for high performance electrical double layer capacitors. Nanoscale 8:11136–11142

    Article  CAS  Google Scholar 

  53. Cheng P, Gao SY, Zang PY, Yang XF, Bai YL, Xu H, Liu ZH, Lei ZB (2015) Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 93:315–324

    Article  CAS  Google Scholar 

  54. Wang JG, Yang Y, Huang ZH, Kang FY (2013) A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes. Carbon 61:190–199

    Article  CAS  Google Scholar 

  55. Chang J, Jin MH, Yao F, Kim TH, Le VT, Yue HY, Gunes F, Li B, Ghosh A, Xie SS, Lee YH (2013) Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv Funct Mater 23:5074–5083

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Science Foundation of China (21664012, 51462032), the program for Changjiang Scholars and Innovative Research Team in University (IRT15R56), the Innovation Team Basic Scientific Research Project of Gansu Province (1606RJIA324), Key Laboratory of Eco-Environment-Related Polymer Materials (Northwest Normal University) of Ministry of Education, and Key Laboratory of Polymer Materials of Gansu Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kanjun Sun or Guofu Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K., Li, J., Peng, H. et al. Promising nitrogen-doped porous nanosheets carbon derived from pomegranate husk as advanced electrode materials for supercapacitors. Ionics 23, 985–996 (2017). https://doi.org/10.1007/s11581-016-1897-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1897-5

Keywords

Navigation