Skip to main content
Log in

Effect of Li content on the electrochemical performance of Li1 + x (Mn0.675Ni0.1625Co0.1625)1 − x O2 cathode materials for high-power Li-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Li-rich Li1 + x (Mn0.675Ni0.1625Co0.1625)1 − x O2 (x = 0.1, 0.2, 0.3, and 0.4) materials were prepared using MCO3 precursors through hydrothermal treatment with using urea as precipitator. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge/discharge test are conducted to evaluate the physical and electrochemical properties of the spherical mesocrystal and resulting materials. Results show that the c/a ratio for the cathode material decreases and the layered structure deteriorates with increasing Li content. Li1.2Mn0.54Ni0.13Co0.13O2 (x = 0.2) exhibits the excellent electrochemical performance with an initial discharge capacity of 339 mAh g−1 at 20 mA g−1 and a capacity of 115 mAh g−1 at 400 mA g−1 after 50 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stoyanova R, Zhecheva E, Zarkoba L (1994) Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMnyCo1-yO2 solid solutions. Solid State Ionics 73:233–240

    Article  CAS  Google Scholar 

  2. Ohzuku T, Ueda A, Nagayama M (1993) Electrochemistry and structural chemistry of LiNiO2(R3m) for 4 volt secondary lithium cells. J Electrochem Soc 140:1862–1870

    Article  CAS  Google Scholar 

  3. Shi SJ, Lou ZR, Xia TF, Wang XL, Gu CD, Tu JP (2014) Hollow Li1.2Mn0.5Co0.25Ni0.05O2 microcube prepared by binary template as a cathode material for lithium ion batteries. J Power Sources 257:198–204

    Article  CAS  Google Scholar 

  4. Yia TF, Tao W, Chen B, Zhu YR, Yang SY, Xie Y (2016) High-performance xLi2MnO3(1-x)LiMn1/3Co1/3Ni1/3O2 (0.1≤ x ≤0.5) as Cathode Material for Lithium-ion Battery. Electrochim Acta 188:686–695

  5. He ZJ, Wang ZX, Chen H, Huang ZM, Li XH, Guo HJ, Wang RH (2015) Electrochemical performance of zirconium doped lithium rich layered Li1.2Mn0.54Ni0.13Co0.13O2 oxide with porous hollow structure. J Power Sources 299:334–341

    Article  CAS  Google Scholar 

  6. Zhang Y, Li Y, Xia X, Wang X, Gu C, Tu J (2015) High-energy cathode materials for Li-ion batteries: a review of recent developments. Science China Technol Sci. Science China Technol Sci 58:1809–1828

  7. Martha SK, Nanda J, Veith GM, Dudney NJ (2012) Electrochemical and rate performance study of high voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J Power Sources 199:220–226

    Article  CAS  Google Scholar 

  8. Shin S-S, Sun Y-K, Amine K (2002) Synthesis and electrochemical properties of Li [Li(1−2x)/3NixMn(2−x)/3]O2 as cathode materials for lithium secondary batteries. J Power Sources 112:634–638

    Article  CAS  Google Scholar 

  9. Shi SJ, Tu JP, Tang YY, Yu YX, Zhang YQ, Wang XL (2013) Synthesis and electrochemical performance of Li1.131Mn0.504Ni0.243Co0.122O2 cathode materials for lithium ion batteries via freeze drying. J Power Sources 221:300–307

    Article  CAS  Google Scholar 

  10. Zheng Z, Liao S-X, Xu B-B, Zhong B-H (2015) The roles of nickel/manganese in electrochemical cycling of lithium-rich Mn-based nickel cathode materials. Ionics 21:3295–3300

    Article  CAS  Google Scholar 

  11. Zhang L, Jin K, Wang L, Zhang Y, Li X, Song Y (2015) High capacity Li1.2Mn0.54Ni0.13Co0.13O4 cathode materials synthesized using mesocrystal precursors for lithium-ion batteries. J Alloys Compd 638:298–304

    Article  CAS  Google Scholar 

  12. Cölfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed 44:5576–5591

    Article  Google Scholar 

  13. Zhou L, O’Brien P (2012) Mesocrystals-Properties and Applications. J Phys Chem Lett 3:620–628

    Article  CAS  Google Scholar 

  14. Song RQ, Cölfen H (2010) Mesocrystals—Ordered nanoparticle superstructures. Adv Mater 22:1301–1330

    Article  CAS  Google Scholar 

  15. Fang J, Ding B, Gleiter H (2011) Mesocrystals: syntheses in metals and applications. Chem Soc Rev 40:5347–5360

    Article  CAS  Google Scholar 

  16. Tang Z, Wang Z, Li X, Peng W (2012) Influence of lithium content on the electrochemical performance of Li1+x(Mn0.533Ni0.233Co0.233)1−xO2 cathode materials. J Power Sources 208:237–241

    Article  CAS  Google Scholar 

  17. Gao Y, Yakovleva M (1998) Novel LiNi1−xTix/2Mgx/2O2 Compounds as Cathode Materials for Safer Lithium‐Ion Batteries. W. Ebner. Electrochem Solid-State Lett 1:117–119

  18. Ohzuku T, Takeda S, Iwanaga M (1999) Solid-state redox potentials for Li[Me1/2Mn3/2]O2 (Me: 3dtransition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. J Power Sources 81:90–94

    Article  Google Scholar 

  19. Liu Y, Liu S (2013) Effect of cooling method on the electrochemical performance of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathodes. Ionics 19:477–481

    Article  CAS  Google Scholar 

  20. Kang SH, Kim J, Stoll ME, Abraham D, Sun YK, Amine K (2002) Layered Li(Ni0.5−xMn0.5−xM2x)O2(M′=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries. J Power Sources 112:41–48

    Article  CAS  Google Scholar 

  21. Hattori Y, Konishi T, Kaneko K (2002) XAFS and XPS studies on the enhancement of methane adsorption by NiO dispersed ACF with the relevance to structural change of NiO. Chem Phys Lett 355:37–42

    Article  CAS  Google Scholar 

  22. Moses AW, Flores HGG, Kim J-G, Langell MA (2007) Surface properties of LiCoO2, LiNiO2 and LiNi1−xCoxO2. Appl Surf Sci 253:4782–4791

    Article  CAS  Google Scholar 

  23. Casella IG, Guascito MR (1999) Anodic electrodeposition of conducting cobalt oxyhydroxide films on a gold surface. XPS study and electrochemical behaviour in neutral and alkaline solution. J Electroanal Chem 476:54–63

    Article  CAS  Google Scholar 

  24. Sivaprakash S, Majumder S, Katiyar R (2009) Investigations on 0.5Li(Ni0.8Co0.15Zr0.05)O2 –0.5Li(Li1⁄3Mn2⁄3)O2 Cathode for Li Rechargeable Batteries. J Electrochem Soc 156:A328–A333

    Article  CAS  Google Scholar 

  25. Paulsen J, Thomas C, Dahn J (2000) O2 Structure Li2/3[Ni1/3Mn2/3]O2: A New Layered Cathode Material for Rechargeable Lithium Batteries. J Electrochem Soc 147:861–868

    Article  CAS  Google Scholar 

  26. Sivaprakash S, Majumder S (2010) Spectroscopic analyses of 0.5Li[Ni0.8Co0.15Zr0.05O2 -0.5Li[Li1/3Mn2/3]O2 composite cathodes for lithium rechargeable batteries. Solid State Ionics 181:730–739

    Article  CAS  Google Scholar 

  27. Park S-H, Kang S-H, Johnson C, Amine K, Thackeray M (2007) Lithium–manganese–nickel-oxide electrodes with integrated layered–spinel structures for lithium batteries. Electrochem Commun 9:262–268

    Article  CAS  Google Scholar 

  28. Lu Z, Dahn JR (2002) Understanding the anomalous capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc 149:A815–A822

    Article  CAS  Google Scholar 

  29. Zhang L, Borong W, Ning L, Feng W (2014) Hierarchically porous micro-rod lithium-rich cathode material Li1.2Ni0.13Mn0.54Co0.13O2 for high performance lithium-ion batteries. Electrochim Acta 118:67–74

    Article  CAS  Google Scholar 

  30. Li L, Zhang X, Chen R, Zhao T, Lu J, Wu F, Amine K (2014) Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries. J Power Sources 249:28–34

    Article  CAS  Google Scholar 

  31. Bettge M, Li Y, Sankaran B, Rago ND, Spila T, Haasch RT, Petrov I, Abraham DP (2013) Improving highcapacity Li1.2Ni0.15Mn0.55Co0.1O2 -based lithium-ion cells by modifiying the positive electrode with alumina. J Power Sources 233:346–357

    Article  CAS  Google Scholar 

  32. Zhang YD, Li Y, Niu XQ, Wang DH, Zhou D, Wang XL, Gu CD, Tu JP (2015) A peanut-like hierarchical micro/nano-Li1.2Mn0.54Ni0.18Co0.08O2 cathode material for lithium-ion batteries with enhanced electrochemical performance. J Mater Chem A 3:14291–14297

    Article  CAS  Google Scholar 

  33. Du CQ, Zhang F, Ma CX, Wu JW, Tang ZY, Zhang XH, Qu DY (2016) Synthesis and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion battery. Ionics 22:209–218

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Foundation of Henan Educational Committee (No. 13A530366), Foundation for Young Teachers of 2012 Henan Province Colleges and Universities (GGJS-116), Foundation for Young Teachers of Zhengzhou University of Light Industry (2011XGGJS005), and Scientific Research Foundation of Zhengzhou University of Light Industry in 2015 (No. 2015XJJZ036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linsen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, H. & Wang, L. Effect of Li content on the electrochemical performance of Li1 + x (Mn0.675Ni0.1625Co0.1625)1 − x O2 cathode materials for high-power Li-ion batteries. Ionics 23, 829–835 (2017). https://doi.org/10.1007/s11581-016-1882-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1882-z

Keywords

Navigation