Skip to main content
Log in

Facile synthesis of N-doped carbon nanosheet-encased cobalt nanoparticles as efficient oxygen reduction catalysts in alkaline and acidic media

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, a low-cost, high-performance, and environmentally friendly non-precious-metal catalyst was fabricated via a simple pyrolysis of the corn starch, dicyandiamide, and cobalt acetate for the oxygen reduction reaction (ORR). Scanning electron microscope (SEM) and transmission electron microscopy (TEM) images show that the catalyst has porous and graphene-like carbon nanosheet-encased metal nanoparticles structure. Electrochemical measurements show that, compared to the commercial Pt/C catalysts, the catalyst has a low overpotential, larger current density, and better methanol tolerance ability for ORR in both alkaline and acidic media, which may be attributed to the incorporation of Co–Nx moieties and Co nanoparticles. The transferred number of electrons during the ORR with the catalyst was calculated to be ∼3.9 in alkaline media (∼3.7 in acidic media), indicating that the product would be a promising non-noble cathode catalyst in alkaline and acidic fuel cells or Li/Zn air batteries.

Proposed synthetic protocol for N-doped carbon nanosheet-encased cobalt nanoparticles, and it act as efficient oxygen reduction catalysts in alkaline and acidic media

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Qin Y, Lu J, Du P, Chen ZH, Ren Y, Wu TP, Miller JT, Wen JG, Miller DJ, Zhang ZC, Amine K (2013) In situ fabrication of porous-carbon-supported alpha-MnO2 nanorods at room temperature: application for rechargeable Li-O-2 batteries. Energy Environ Sci 6(2):519–531

    Article  CAS  Google Scholar 

  2. Yu QM, Xu JX, Wu CX, Guan LH (2015) Strong-coupled Co-g-C3N4/SWCNTs composites as high-performance electrocatalysts for oxygen reduction reaction. RSC Adv 5(80):65303–65307

    Article  CAS  Google Scholar 

  3. Wang H, Zhang Z, Yang YX, Wang KL, Ji S, Key JL, Ma YY, Wang RF (2015) A Co-N-doped carbonized egg white as a high-performance, non-precious metal, electrocatalyst for oxygen reduction. J Solid State Electrochem 19(6):1727–1733

    Article  CAS  Google Scholar 

  4. Lopes T, Antolini E, Colmati F, Gonzalez ER (2007) Carbon supported Pt-Co (3: 1) alloy as improved cathode electrocatalyst for direct ethanol fuel cells. J Power Sources 164(1):111–114

    Article  CAS  Google Scholar 

  5. Lefevre M, Proietti E, Jaouen F, Dodelet J-P (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923):71–74

    Article  CAS  Google Scholar 

  6. Deng D, Yu L, Chen X, Wang G, Jin L, Pan X, Deng J, Sun G, Bao X (2013) Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angewandte Chemie-Int Ed 52(1):371–375

    Article  CAS  Google Scholar 

  7. Zhang J, Wu SY, Chen X, Cheng K, Pan M, Mu SC (2014) An animal liver derived non-precious metal catalyst for oxygen reduction with high activity and stability. RSC Adv 4(62):32811–32816

    Article  CAS  Google Scholar 

  8. Cheriti M, Kahoul A, Azizi A, Alonso-Vante N (2013) Effect of Co substitution for Fe in Sr2FeMoO6 on electrocatalytic properties for oxygen reduction in alkaline medium. Ionics 19(8):1155–1162

    Article  CAS  Google Scholar 

  9. Yang D-S, Bhattacharjya D, Inamdar S, Park J, Yu J-S (2012) Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J Am Chem Soc 134(39):16127–16130

    Article  CAS  Google Scholar 

  10. Liu Q, Duan Y, Zhao Q, Pan F, Zhang B, Zhang J (2014) Direct synthesis of nitrogen-doped carbon nanosheets with high surface area and excellent oxygen reduction performance. Langmuir 30(27):8238–8245

    Article  CAS  Google Scholar 

  11. Zhang L, Niu J, Dai L, Xia Z (2012) Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells. Langmuir 28(19):7542–7550

    Article  CAS  Google Scholar 

  12. Yuan HR, Deng LF, Cai XX, Zhou SG, Chen Y, Yuan Y (2015) Nitrogen-doped carbon sheets derived from chitin as non-metal bifunctional electrocatalysts for oxygen reduction and evolution. RSC Adv 5(69):56121–56129

    Article  CAS  Google Scholar 

  13. Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028):443–447

    Article  CAS  Google Scholar 

  14. Bezerra CWB, Zhang L, Lee KC, Liu HS, Marques ALB, Marques EP, Wang HJ, Zhang JJ (2008) A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53(15):4937–4951

    Article  CAS  Google Scholar 

  15. Kramm UI, Herrmann-Geppert I, Bogdanoff P, Fiechter S (2011) Effect of an ammonia treatment on structure, composition, and oxygen reduction reaction activity of Fe-N-C catalysts. J Phys Chem C 115(47):23417–23427

    Article  CAS  Google Scholar 

  16. Byon HR, Suntivich J, Shao-Horn Y (2011) Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid. Chem Mat 23(15):3421–3428

    Article  CAS  Google Scholar 

  17. He QG, Yang XF, He RH, Bueno-Lopez A, Miller H, Ren XM, Yang WL, Koel BE (2012) Electrochemical and spectroscopic study of novel Cu and Fe-based catalysts for oxygen reduction in alkaline media. J Power Sources 213:169–179

    Article  CAS  Google Scholar 

  18. Liu ZY, Zhang GX, Lu ZY, Jin XY, Chang Z, Sun XM (2013) One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res 6(4):293–301

    Article  CAS  Google Scholar 

  19. Ju J, Bo XJ, Wang H, Zhang YF, Luhana C, Guo LP (2012) Poly-o-toluidine cobalt supported on ordered mesoporous carbon as an efficient electrocatalyst for oxygen reduction. Electrochem Commun 25:35–38

    Article  CAS  Google Scholar 

  20. Morozan A, Jegou P, Jousselme B, Palacin S (2011) Electrochemical performance of annealed cobalt-benzotriazole/CNTs catalysts towards the oxygen reduction reaction. Phys Chem Chem Phys 13(48):21600–21607

    Article  CAS  Google Scholar 

  21. Shin D, Jeong B, Mun BS, Jeon H, Shin HJ, Baik J, Lee J (2013) On the origin of electrocatalytic oxygen reduction reaction on electrospun nitrogen-carbon species. J Phys Chem C 117(22):11619–11624

    Article  CAS  Google Scholar 

  22. Zhao Y, Yang L, Chen S, Wang X, Ma Y, Wu Q, Jiang Y, Qian W, Hu Z (2013) Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J Am Chem Soc 135(4):1201–1204

    Article  CAS  Google Scholar 

  23. He QG, Li Q, Khene S, Ren XM, Lopez-Suarez FE, Lozano-Castello D, Bueno-Lopez A, Wu G (2013) High-loading cobalt oxide coupled with nitrogen-doped graphene for oxygen reduction in anion-exchange-membrane alkaline fuel cells. J Phys Chem C 117(17):8697–8707. doi:10.1021/jp401814f

    Article  CAS  Google Scholar 

  24. Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai HJ (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10(10):780–786

    Article  CAS  Google Scholar 

  25. Wang ZJ, Lei HT, Cao R, Zhang MN (2015) Cobalt corrole on carbon nanotube as a synergistic catalyst for oxygen reduction reaction in acid media. Electrochim Acta 171:81–88

    Article  CAS  Google Scholar 

  26. Xiao YH, Zhan GH, Fu ZG, Pan ZC, Xiao CM, Wu SK, Chen C, Hu GH, Wei ZG (2015) Titanium cobalt nitride supported platinum catalyst with high activity and stability for oxygen reduction reaction. J Power Sources 284:296–304

    Article  CAS  Google Scholar 

  27. Zheng B, Wang J, Wang FB, Xia XH (2014) Low-loading cobalt coupled with nitrogen-doped porous graphene as excellent electrocatalyst for oxygen reduction reaction. J Mater Chem A 2(24):9079–9084

    Article  CAS  Google Scholar 

  28. Lee DU, Kim BJ, Chen Z (2013) One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst. J Mater Chem A 1(15):4754–4762

    Article  CAS  Google Scholar 

  29. Lv L-B, Ye T-N, Gong L-H, Wang K-X, Su J, Li X-H, Chen J-S (2015) Anchoring cobalt nanocrystals through the plane of graphene: highly integrated electrocatalyst for oxygen reduction reaction. Chem Mat 27(2):544–549

    Article  CAS  Google Scholar 

  30. Xiao JJ, Bian XJ, Liao L, Zhang S, Ji C, Liu BH (2014) Nitrogen-doped mesoporous graphene as a synergistic electrocatalyst matrix for high-performance oxygen reduction reaction. ACS Appl Mater Interfaces 6(20):17654–17660

    Article  CAS  Google Scholar 

  31. Niu K, Yang B, Cui J, Jin J, Fu X, Zhao Q, Zhang J (2013) Graphene-based non-noble-metal Co/N/C catalyst for oxygen reduction reaction in alkaline solution. J Power Sources 243:65–71

    Article  CAS  Google Scholar 

  32. Dou S, Huang XB, Ma ZL, Wu JH, Wang SY (2015) A simple approach to the synthesis of BCN graphene with high capacitance. Nanotechnology 26(4):7

    Article  Google Scholar 

  33. Dai L, Chang DW, Baek J-B, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8(8):1130–1166

    Article  CAS  Google Scholar 

  34. Wang L, Zheng YL, Wang XH, Chen SH, Xu FG, Zuo L, Wu JL, Sun LL, Li Z, Hou HQ, Songt YH (2014) Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. ACS Appl Mater Interfaces 6(10):7117–7125

    Article  CAS  Google Scholar 

  35. Wang L, Zhang QY, Chen SL, Xu FG, Chen SH, Jia JB, Tan HL, Hou HQ, Song YH (2014) Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials. Anal Chem 86(3):1414–1421

    Article  CAS  Google Scholar 

  36. Pan F, Jin J, Fu X, Liu Q, Zhang J (2013) Advanced oxygen reduction electrocatalyst based on nitrogen-doped graphene derived from edible sugar and urea. ACS Appl Mater Interfaces 5(21):11108–11114

    Article  CAS  Google Scholar 

  37. Tammeveski L, Erikson H, Sarapuu A, Kozlova J, Ritslaid P, Sammelselg V, Tammeveski K (2012) Electrocatalytic oxygen reduction on silver nanoparticle/multi-walled carbon nanotube modified glassy carbon electrodes in alkaline solution. Electrochem Commun 20:15–18

    Article  CAS  Google Scholar 

  38. Liu J, Zhang T, Wang Z, Dawson G, Chen W (2011) Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J Mater Chem 21(38):14398–14401

    Article  CAS  Google Scholar 

  39. Xu J, Li Y, Peng S, Lu G, Li S (2013) Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea. Phys Chem Chem Phys 15(20):7657–7665

    Article  CAS  Google Scholar 

  40. Fischer A, Muller JO, Antonietti M, Thomas A (2008) Synthesis of ternary metal nitride nanoparticles using mesoporous carbon nitride as reactive template. ACS Nano 2(12):2489–2496

    Article  CAS  Google Scholar 

  41. Jun Y-S, Hong WH, Antonietti M, Thomas A (2009) Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites. Adv Mater 21(42):4270-+

    Article  CAS  Google Scholar 

  42. Li X-H, Chen J-S, Wang X, Sun J, Antonietti M (2011) Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons. J Am Chem Soc 133(21):8074–8077

    Article  CAS  Google Scholar 

  43. Li X-H, Kurasch S, Kaiser U, Antonietti M (2012) Synthesis of monolayer-patched graphene from glucose. Angewandte Chemie-Int Ed 51(38):9689–9692

    Article  CAS  Google Scholar 

  44. Dorjgotov A, Ok J, Jeon Y, Yoon SH, Shul YG (2013) Nitrogen-doped ordered porous carbon catalyst for oxygen reduction reaction in proton exchange membrane fuel cells. J Solid State Electrochem 17(10):2567–2577

    Article  CAS  Google Scholar 

  45. Kundu S, Nagaiah TC, Xia W, Wang Y, Van Dommele S, Bitter JH, Santa M, Grundmeier G, Bron M, Schuhmann W, Muhler M (2009) Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. J Phys Chem C 113(32):14302–14310

    Article  CAS  Google Scholar 

  46. Neburchilov V, Wang HJ, Martin JJ, Qu W (2010) A review on air cathodes for zinc-air fuel cells. J Power Sources 195(5):1271–1291

    Article  CAS  Google Scholar 

  47. Han JJ, Li N, Zhang TY (2009) Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte. J Power Sources 193(2):885–889

    Article  CAS  Google Scholar 

  48. Pan F, Duan Y, Zhang X, Zhang J (2016) A facile synthesis of nitrogen/sulfur co-doped graphene for the oxygen reduction reaction. Chemcatchem 8(1):163–170

    Article  CAS  Google Scholar 

  49. Cao R, Thapa R, Kim H, Xu X, Kim MG, Li Q, Park N, Liu M, Cho J (2013) Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat Commun 4

  50. Fu X, Liu Y, Cao X, Jin J, Liu Q, Zhang J (2013) FeCo-N-x embedded graphene as high performance catalysts for oxygen reduction reaction. Appl Catal B-Environ 130:143–151

    Article  Google Scholar 

  51. Liu J, Sun X, Song P, Zhang Y, Xing W, Xu W (2013) High-performance oxygen reduction electrocatalysts based on cheap carbon black, nitrogen, and trace iron. Adv Mater 25(47):6879–6883

    Article  CAS  Google Scholar 

  52. De Koninck M, Marsan B (2008) MnxCu1-xCo2O4 used as bifunctional electrocatalyst in alkaline medium. Electrochim Acta 53(23):7012–7021

    Article  Google Scholar 

  53. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764

    Article  CAS  Google Scholar 

  54. Wang Q, Zhou Z-Y, Lai Y-J, You Y, Liu J-G, Wu X-L, Terefe E, Chen C, Song L, Rauf M, Tian N, Sun S-G (2014) Phenylenediamine-based FeNx/C Catalyst with high activity for oxygen reduction in acid medium and its active-site probing. J Am Chem Soc 136(31):10882–10885

    Article  CAS  Google Scholar 

  55. Zhao Y, Watanabe K, Hashimoto K (2012) Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer. J Am Chem Soc 134(48):19528–19531

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to The University Scientific Research Project of Gansu Province Foundation (Grant No. 2014A-034), Postdoctoral Science Foundation of China (no. 2015M581966), for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2803 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Ma, Q., Pan, F. et al. Facile synthesis of N-doped carbon nanosheet-encased cobalt nanoparticles as efficient oxygen reduction catalysts in alkaline and acidic media. Ionics 22, 2203–2212 (2016). https://doi.org/10.1007/s11581-016-1748-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1748-4

Keywords

Navigation