Skip to main content
Log in

Studies on structural and electrical properties of Mg0. 5+y (Zr2-yFey) 2 (PO4) 3 ceramic electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The sample of Mg0. 5+y (Zr1-y Fey) 2 (PO4) 3 (0.0 ≤y ≤0.5) was synthesized using the sol-gel method. The structures of the samples were investigated using X-ray diffraction and Fourier transform infrared spectroscopy measurement. XRD studies showed that samples had a monoclinic structure which was iso-structured with the parent compound, Mg0.5Zr (PO4) 3. The complex impedance spectroscopy was carried out in the frequency range 1–6 MHz and temperature range 303 to 773 K to study the electrical properties of the electrolytes. The substitutions of Fe3+ with Zr4+ in the Mg0.5Zr (PO4) 3 structure was introduced as an extrainterstitial Mg2+ ion in the modified structured. The compound of Mg0.5+y (Zr1-y Fey)2(PO4)3 with y = 0.4 gives a maximum conductivity value of 1.25 × 10−5 S cm−1 at room temperature and 7.18 × 10−5 S cm−1 at 773 K. Charge carrier concentration, mobile ion concentration, and ion hopping rate are calculated by fitting the conductance spectra to power law variation, σ ac (ω) = σ o + Aω α. The charge carrier concentration and mobile ion concentration increases with increase of Fe3+ inclusion. This implies the increase in conductivity of the compounds was due to extra interstitial Mg2+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rasul S, Suzuki S, Yamaguchi S, Miyayama M (2012) High capacity positive electrodes for secondary Mg-ion batteries. Electrochim Acta 82:243–249

    Article  CAS  Google Scholar 

  2. Adnan SBRS, Mohamed NS (2013) Structural, thermal and electrical properties of Li4-2xZnxSiO4 ceramic electrolyte prepared by citrate sol gel technique. Int J Electrochem Sci 8:6055–6067

    CAS  Google Scholar 

  3. Plylahan N, Vidal-Abarca C, Lavela P, Tirado JL (2012) Chromium substitution in ion exchange Li3Fe2 (PO4) 3 and the effects on the electrochemical behavior as a cathode for lithium batteries. Electrochim Acta 62:124–131

    Article  CAS  Google Scholar 

  4. Andersson AS, Kalska B, Eyob P, Aernout D, Haggstrom L, Thomas JO (2001) Lithium insertion into rhombohedral LiFe (PO4) 3. Solid State Ionics 140:63–70

    Article  CAS  Google Scholar 

  5. Makino K, Katayama Y, Miura T, Kishi T (2012) Preparation and electrochemical magnesium insertion behaviors of Mg0. 5 + y (MeyTi1 − y) 2 (PO4) 3 (Me = Cr, Fe). J Power Sources 112:85–89

    Article  Google Scholar 

  6. Anuar NK, Adnan SBRS, Mohamed NS (2014) Characterization of Mg0.5Zr2 (PO4) 3 for potential use as electrolyte in solid state magnesium batteries. Ceram Int 40(8, Part B):13719–13727

    Article  CAS  Google Scholar 

  7. Hui SR, Roller J, Yick S, Zhang X, Decès-Petit C, Xie Y, Maric R, Ghosh D (2007) A brief review of the ionic conductivity enhancement for selected oxide electrolytes. J Power Sources 172:493–502

    Article  CAS  Google Scholar 

  8. Bruce PG, Evans J, Vincent CA (1998) Conductivity and transference number measurements on polymer electrolytes. Solid State Ionics 28–30:918–922

    Google Scholar 

  9. Riley M, Peter S, Fedkiw SAK (2002) Transport properties of lithium hectorite-based composite electrolytes. Electrochem Soc 149:A667–A674

    Article  CAS  Google Scholar 

  10. Rahman T, Vargas M, Rama CV (2014) Structural characteristic, electrical conduction and dielectric properties of gadolinium cobalt ferrite. J Alloys Compd 617:547–562

    Article  CAS  Google Scholar 

  11. Wu X, Wen Z, Xu X, Wang X, Lin J (2009) Synthesis and characterization of Li4SiO4 nano-powders by a water-based sol–gel process. J Nucl Mater 392:471–475

    Article  CAS  Google Scholar 

  12. Chung HT, Kim JG, Kim HG (1998) Dependence of the lithium ion conductivity on the B-site ion substitution in (Li0.5La0.5) Ti1 − xMxO3 (M = Sn, Zr, Mn, Ge). Solid State Ionics 107:152–160

    Article  Google Scholar 

  13. Kadam RH, Karim A, Kadam AB, Gaikwad AS, Shirsath SE (2012) Influence of Cr3+ substitution on the electrical and magnetic properties of Ni0.4Cu0.4Zn0.2Fe2O4 nanoparticles. International Nano Letters 2:28–34

    Article  Google Scholar 

  14. Adnan SBRS, Mohamed NS (2014) Properties of novel Li4-3xCrxSiO4 ceramic electrolyte. Ceram Int 40:5033–5038

    Article  CAS  Google Scholar 

  15. Berry FJ, Costantini N, Smart LE (2006) Synthesis and characterization of Cr3+-containing NASICON-related phases. Solid State Ionics 177:2889–2896

    Article  CAS  Google Scholar 

  16. Ait Salah A, Jozwiak P, Zaghib K, Garbarczyk J, Gendron F, Maugerd A, Julien CM (2006) FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries. Spectrochim Acta A 65:1007–1013

    Article  CAS  Google Scholar 

  17. Matos JME, Anjos Júnior FM, Cavalcante LS, Santos V, Leal SH, Santos Júnior LS, Santos MRMC, Longo E (2009) Reflux synthesis and hydrothermal processing of ZrO2 nanopowders at low temperature. Mater Chem Phys 117:455–459

    Article  CAS  Google Scholar 

  18. Ejehi F, Marashi SPH, Ghaani MR, Haghshena DF (2012) The synthesis of NASICON-type ZrNb (PO4) 3 structure by the use of Pechini method. Ceram Int 38:6857–6863

    Article  CAS  Google Scholar 

  19. Zhou DF, Xia YJ, Zhu JX, Meng J (2009) Preparation and electrical properties of new ion conductors Ce6-xDyxMoO15-δ (0.0 ≤ x ≤ 1.8). Solid State Sci 11:1587–1591

    Article  CAS  Google Scholar 

  20. Adnan SBRS, Mohamed NS (2014) Structural, electrical and electrochemical properties of novel Li4 + 2x + yZnxMySi1-x-yO4 (where x = 0.04, y = 0.03; M = Al, Cr) ceramic electrolytes. Electrochim Acta 146:598–610

    Article  CAS  Google Scholar 

  21. Adnan SBRS, Mohamed NS (2012) Conductivity and dielectric Studies of Li2ZnSiO4 ceramic electrolyte synthesized via citrate sol gel method. Int J Electrochem Sci 7:9844–9858

    CAS  Google Scholar 

  22. Almond DP, West AR (1983) Mobile ion concentrations in solid electrolytes from an analysis of AC conductivity. Solid State Ionics 9&10:277–282

    Article  Google Scholar 

  23. Savitha T, Selvasekarapandian S, Ramya CS, Bhuvaneswari MS, Hirankumar G, Baskaran R, Angelo PC (2006) Structural and ionic transport properties of Li2AlZr [PO4] 3. J Power Sources 157:533–536

    Article  CAS  Google Scholar 

  24. Almond DP, West AR (1987) The activation entropy for transport in ionic conductors. Solid State Ionics 23:27–35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the University of Malaya (research grant RP013C-13AFR and BK049-2014) is gratefully acknowledged

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. R. S. Adnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anuar, N.K., Adnan, S.B.R.S., Jaafar, M.H. et al. Studies on structural and electrical properties of Mg0. 5+y (Zr2-yFey) 2 (PO4) 3 ceramic electrolytes. Ionics 22, 1125–1133 (2016). https://doi.org/10.1007/s11581-015-1623-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1623-8

Keywords

Navigation