Skip to main content
Log in

Electrical conductivity and dielectric relaxation studies on microwave synthesized Na2SO4·NaPO3·MoO3 glasses

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Electrical conductivity and dielectric relaxation studies on SO4 2− doped modified molybdo-phosphate glasses have been carried out over a wide range of composition, temperature and frequency. The d.c. conductivities which have been measured by both digital electrometer (four-probe method) and impedance analyser are comparable. The relaxation phenomenon has been rationalized using electrical modulus formalism. The use of modulus representation in dielectric relaxation studies has inherent advantages viz., experimental errors arising from the contributions of electrode-electrolyte interface capacitances are minimized. The relaxation observed in the present study is non-Debye type. The activation energies for relaxation were determined using imaginary parts of electrical modulus peaks which were close to those of the d.c. conductivity implying the involvement of similar energy barriers in both the processes. The enhanced conductivity in these glasses can be attributed to the migration of Na+, in expanded structures due to the introduction of SO4 2− ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. KJ Rao (2002) Structural chemistry of glasses, Elsevier

  2. Angell CA (1990) Chem Rev 90:523–542

    Article  CAS  Google Scholar 

  3. Elliott SR, Owen AP, Bunsenges BD (1991) Int J Phys Chem 95:987

    Google Scholar 

  4. Ngai KL (1996) J Non-Cryst Solids 103:232–245

    Article  Google Scholar 

  5. Brow RK (2000) J Non-Cryst Solids 263:1–28

    Article  Google Scholar 

  6. Narayana Reddy C, Veeranna Gowda VC, Sujatha B (2006) Ionics 12:159–165

    Article  Google Scholar 

  7. Sujatha B, Narayana Reddy C, Chakradhar RPS (2010) Philos Mag B 90:632–2650

    Google Scholar 

  8. Chandra A, Bhatt A, Chandra A (2013) J Mater Sci Technol 29(3):193–208

    Article  CAS  Google Scholar 

  9. Langar A, Sdiri N, Elhouichet H, Ferid M (2014) J Alloys Comp 590:380–387

    Article  CAS  Google Scholar 

  10. Veeranna Gowda VC, Chethana BK, Narayana Reddy C (2013) Mater Sci Engg B 178:826–833

    Article  Google Scholar 

  11. Sokolov IA, Murin IV, Kriyt VE, Pronkin AA (2011) Glass. Phys Chem 37(4):351–361

    CAS  Google Scholar 

  12. Nepomiluev AM, Pletnev RK, Lapina OV, Kozlova SV, Bamburov VG (2002) Glas Phys Chem 28:1–4

    Article  CAS  Google Scholar 

  13. Careem MA, Mellander BE (1985) Solid State Ionics 15:327–330

    Article  CAS  Google Scholar 

  14. Malugani JP, Meiez R, Fahys B, Robert G (1982) J Solid State Chem 45:309–316

    Article  CAS  Google Scholar 

  15. Ganguli M, Harish Bhat M, Rao KJ (1999) Solid State Ionics 122:23–33

  16. Nuchter M, Ondruschka B, Bonrathb W, Gum A (2004) Green Chem 6:128–141

    Article  Google Scholar 

  17. Yasuoka M, Nishimura Y, Nagoka T, Watari K (2006) J Therm Anal Calorim 83:407–410

    Article  CAS  Google Scholar 

  18. Vaidyanathan B, Agarwal DK, Roy R (2004) J Am Ceram Soc 87:834–839

    Article  Google Scholar 

  19. Vaidhyanathan B, Rao KJ (1996) Bull Mater Sci 19:1163–1165

    Article  CAS  Google Scholar 

  20. Klading WF, Horn JE (1990) Ceram Int 16:99–106

    Article  Google Scholar 

  21. Komarneni S, Li Q, Stefansson KM, Roy R (1993) J Mater Res 8:3176–3183

    Article  CAS  Google Scholar 

  22. Harish Bhat M, Chakravarthy BP, Ramakrishnan PA, Lavasseur A, Rao KJ (2000) Bull Mater Sci 23:461–466

    Article  Google Scholar 

  23. Apte SK, Naik SD, Sonawane RS, Kale BB, Pavaskar N, Mandale AB, Das BK (2006) Mater Res Bull 41:647–654

    Article  CAS  Google Scholar 

  24. Pitisescu RR, Barbara M, Marija K, Motoc A, Monty C, Iulia S, Kosmac T, Daskobler A (2004) J Euro Ceram Soc 24:1941–1944

    Article  Google Scholar 

  25. Rao KJ, Mahesh K, Kumar S (2005) Bull Mater Sci 28:19–24

    Article  CAS  Google Scholar 

  26. Vadivel Murugan A, Samuel V, Ravi V (2006) Mater Lett 60:479–480

    Article  Google Scholar 

  27. Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA (1999) Chem Mater 11:882–895

    Article  CAS  Google Scholar 

  28. MJ Frisch, GW Trucks, H B Schlegel et al (2009) Gaussian Inc, Wallingford CT

  29. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  30. Fischer G, Herler S, Mayer P, Schulz A, Villinger A, Weig JJ (2005) Inorg Chem 44:1740–1751

    Article  CAS  Google Scholar 

  31. Selvaraj U, Sundar HGK, Rao KJ (1989) J Chem Soc, Faraday Trans 1 85(2):251–267

    Article  CAS  Google Scholar 

  32. Bih L, Nadiri A, Aride J (2002) J Therm Anal Cal 68:965–972

    Article  CAS  Google Scholar 

  33. Button DP, Tandon R, King C, Velez MH, Tuller HL, Uhlmann DR (1982) J Non-Cryst Solids 49:129–142

    Article  CAS  Google Scholar 

  34. Ganguly M, Rao KJ (1999) J Non-Cryst Solids 2439:251–267

    Article  Google Scholar 

  35. Cohen MH, Turnbull D (1959) J Chem Phys 31:1164–1169

    Article  CAS  Google Scholar 

  36. Moynihan CT (1993) J Am Chem Soc 76(5):1081–1087

    CAS  Google Scholar 

  37. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory Experiment and applications. Wiley, USA

  38. Dhaka R, Dhak D, Dosa M, Pramanik K, Pramanik P (2009) Mat Sci Eng B 164:165

    Article  Google Scholar 

  39. Dyre JC (1988) J Appl Phys 64:2456–2468

    Article  Google Scholar 

  40. Funke K, Banhatti RD (2006) Solid State Ionics 177:1551–1557

    Article  CAS  Google Scholar 

  41. Vogel M (2004) Phys Rev B 70:94302–94310

    Article  Google Scholar 

  42. Ingram MD, Jean Robertson AH (1997) Solid State Ionics 94:49–54

    Article  CAS  Google Scholar 

  43. Dyre JC, Schroder TB (2000) Rev Mod Phys 72:873–892

    Article  Google Scholar 

  44. Ravaine D, Soquet JL (1977) Phys Chem Glasses 18:27

    CAS  Google Scholar 

  45. Martin SW (1991) J Am Ceram Soc 74:1767–1784

    Article  CAS  Google Scholar 

  46. Balakanski M, Wallis RF, Darianian I, Deepe J (1989) Mater Sci Eng B 3:15–21

    Google Scholar 

  47. Selvaraj U, Rao KJ (1985) J Non-Cryst Solids 72:315–334

    Article  CAS  Google Scholar 

  48. Martin SW (1991) Eur J Sol State Inor 28:163–205

    CAS  Google Scholar 

  49. Souquet JL, Kone A, Ribes M (1980) J Non-Cryst Solids 3839:307–310

    Article  Google Scholar 

  50. Satyanarayana N, Karthikeyan A, Venkateswarulu M, Rambabu B (2001) Phys Chem Glasses 42:67–73

    CAS  Google Scholar 

  51. Bih L, El Omari M, Reau JM, Haddad M, Boudlich D, Yacoubi A, Nadiri A (2000) Solid State Ionics 132:71–85

    Article  CAS  Google Scholar 

  52. Saltas V, Vallianatos F, Soupios P, Makris JP, Triantis D (2007) J Hazard Mater 142:520–525

    Article  CAS  Google Scholar 

  53. Kohr SF, Talib ZA, Sidek HAA, Daud WW, Ng BH (2009) Am. J Appl Sci 6(5):1010–1014

    Article  Google Scholar 

  54. Moynihan CT, Boesch LP, Laberge NL (1973) Phys Chem Glasses 14:122–125

    CAS  Google Scholar 

  55. Bhagat AA, Abou-Zeid YM (2001) Phys Chem Glasses 42:361–370

    Google Scholar 

  56. Macedo PB, Moynihan CT, Bose R (1972) Phys Chem Glasses 13:171–179

    CAS  Google Scholar 

  57. Kumar S, Rao KJ (2004) Chem Phys Lett 387:91–94

    Article  CAS  Google Scholar 

  58. Elliott SR, Henn FEG (1990) J Non-Cryst Solids 166:179–190

    Article  Google Scholar 

  59. Ngai KL, Rajgopal AK, Huang CY (1984) J Appl Phys 55:1714–1716

    Article  CAS  Google Scholar 

  60. Bergman R (2000) J App Phys 88:1356–1365

    Article  CAS  Google Scholar 

  61. Majhi K, Vaish R, Parmesh G, Varma KBR (2013) Ionics (19):99–104

  62. Kundu S, Varma KBR (2014) J Am Ceram Soc 97(11):3582–3588

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. K J Rao, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for providing computational facility and many insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Narayana Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sujatha, B., Viswanatha, R., Chethana, B.K. et al. Electrical conductivity and dielectric relaxation studies on microwave synthesized Na2SO4·NaPO3·MoO3 glasses. Ionics 22, 563–571 (2016). https://doi.org/10.1007/s11581-015-1580-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1580-2

Keywords

Navigation