Skip to main content
Log in

Hierarchical LiMn0.5Fe0.5PO4/C nanorods with excellent electrochemical performance synthesized by rheological phase method as cathode for lithium ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The hierarchical LiMn0.5Fe0.5PO4/C (LMFP) nanorods were first successfully synthesized by rheological phase method using polyethylene glycol 4000 (PEG 4000) as a template reagent. The physical and electrochemical properties of the LiMn0.5Fe0.5PO4/C were characterized by TG-DTG, XRD, FTIR, SEM, TEM, EIS and galvanostatic charge-discharge measurements. The results reveal that the PEG-LMFP/C synthesized with the assistance of PEG 4000 shows unique bundle-type shape assembled of nanorods, while the LMFP/C synthesized without PEG 4000 presents a platelet-like shape with some agglomeration. Besides, a uniformly carbon layer coating on the surface of the PEG-LMFP/C can be seen from TEM images. The PEG-LMFP/C exhibits high specific capacity and superior rate performance with discharge capacities of 162, 133, 108, 95, and 78 mAh · g−1 at 0.1, 1, 5, 10, and 20 C rates, respectively. It is demonstrated that the synthesis of LMFP/C with PEG 4000 can significantly decrease the characteristic sizes of the crystals, resulting in improved electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 1444:1188–1194

    Article  Google Scholar 

  2. Hu C, Yi H, Fang H, Yang B, Yao Y, Ma W, Dai Y (2010) Improving the electrochemical activity of LiMnPO4 via Mn-site co-substitution with Fe and Mg. Electrochem Commun 1212:1784–1787

    Article  Google Scholar 

  3. Oh S-M, Myung S-T, Choi YS, Oh KH, Sun Y-K (2011) Co-precipitation synthesis of micro-sized spherical LiMn0.5Fe0.5PO4 cathode material for lithium batteries. J Mater Chem 2148:19368–19374

    Article  Google Scholar 

  4. Akimoto S, Taniguchi I (2013) Synthesis and characterization of LiCo1/3Mn1/3Fe1/3PO4/C nanocomposite cathode of lithium batteries with high rate performance. J Power Sources 242:627–630

    Article  CAS  Google Scholar 

  5. Ni J, Gao L (2011) Effect of copper doping on LiMnPO4 prepared via hydrothermal route. J Power Sources 19615:6498–6501

    Article  Google Scholar 

  6. Zhu H-J, Zhai W, Yang M, X-m L, Chen Y-C, Yang H, Shen X-d (2014) Synthesis and characterization of LiMnPO4/C nano-composites from manganese(II) phosphate trihydrate precipitated from a micro-channel reactor approach. RSC Adv 449:25625–25632

    Article  Google Scholar 

  7. Yamada A, Kudo Y, Liu KY (2001) Reaction mechanism of the olivine-type Li x (Mn0.6Fe0.4)PO4 (0 ≤ x ≤ 1). J Electrochem Soc 1487:A747–A754

    Article  Google Scholar 

  8. Chen GY, Wilcox JD, Richardson TJ (2008) Improving the performance of lithium manganese phosphate through divalent cation substitution. Electrochem Solid-State Lett 1111:A190–A194

    Article  Google Scholar 

  9. Liu W, Gao P, Mi Y, Chen J, Zhou H, Zhang X (2013) Fabrication of high tap density LiFe0.6Mn0.4PO4/C microspheres by a double carbon coating-spray drying method for high rate lithium ion batteries. J Mater Chem A 17:2411–2417

    Article  Google Scholar 

  10. Ni J, Han Y, Gao L, Lu L (2013) One-pot synthesis of CNT-wired LiCo0.5Mn0.5PO4 nanocomposites. Electrochem Commun 31:84–87

    Article  CAS  Google Scholar 

  11. Hong J, Wang F, Wang X, Graetz J (2011) LiFe x Mn1-x PO4: a cathode for lithium-ion batteries. J Power Sources 1967:3659–3663

    Article  Google Scholar 

  12. Zou Q-Q, Zhu G-N, Xia Y-Y (2012) Preparation of carbon-coated LiFe0.2Mn0.8PO4 cathode material and its application in a novel battery with Li4Ti5O12 anode. J Power Sources 206:222–229

    Article  CAS  Google Scholar 

  13. Oh S-M, Jung H-G, Yoon CS, Myung S-T, Chen Z, Amine K, Sun Y-K (2011) Enhanced electrochemical performance of carbon-LiMn1-x Fe x PO4 nanocomposite cathode for lithium-ion batteries. J Power Sources 19616:6924–6928

    Article  Google Scholar 

  14. Saravanan K, Ramar V, Balaya P, Vittal JJ (2011) Li(Mn x Fe1-x )PO4/C (x = 0.5, 0.75 and 1) nanoplates for lithium storage application. J Mater Chem 2138:14925–14935

    Article  Google Scholar 

  15. Zhang B, Wang X, Li H, Huang X (2011) Electrochemical performances of LiFe1-x Mn x PO4 with high Mn content. J Power Sources 19616:6992–6996

    Article  Google Scholar 

  16. Gan Y, Chen C, Liu J, Bian P, Hao H, Yu A (2015) Enhancing the performance of LiMnPO4/C composites through Cr doping. J Alloys Compd 620:350–357

    Article  CAS  Google Scholar 

  17. Li BZ, Wang Y, Xue L, Li XP, Li WS (2013) Acetylene black-embedded LiMn0.8Fe0.2PO4/C composite as cathode for lithium ion battery. J Power Sources 232:12–16

    Article  CAS  Google Scholar 

  18. Zuo P, Cheng G, Wang L, Ma Y, Du C, Cheng X, Wang Z, Yin G (2013) Ascorbic acid-assisted solvothermal synthesis of LiMn0.9Fe0.1PO4/C nanoplatelets with enhanced electrochemical performance for lithium ion batteries. J Power Sources 243:872–879

    Article  CAS  Google Scholar 

  19. Huo Z-Q, Cui Y-T, Wang D, Dong Y, Chen L (2014) The influence of temperature on a nutty-cake structural material: LiMn1-x Fe x PO4 composite with LiFePO4 core and carbon outer layer for lithium-ion battery. J Power Sources 245:331–336

    Article  CAS  Google Scholar 

  20. Xiao PF, Ding B, Lai MO, Lu L (2013) High performance LiMn1-x Fe x PO4 (0 ≤ x ≤ 1) synthesized via a facile polymer-assisted mechanical activation. J Electrochem Soc 1606:A918–A926

    Article  Google Scholar 

  21. Li Y, Hong L, Sun J, Wu F, Chen S (2012) Electrochemical performance of Li3V2(PO4)3/C prepared with a novel carbon source, EDTA. Electrochim Acta 85:110–115

    Article  CAS  Google Scholar 

  22. Qiao YQ, Wang XL, Zhou JP, Zhang J, Gu CD, Tu JP (2012) Synthesis and electrochemical performance of rod-like LiV3O8 cathode materials for rechargeable lithium batteries. J Power Sources 198:287–293

    Article  CAS  Google Scholar 

  23. Yanying W, Yan T, Benhe Z, Heng L, Yanjun Z, Xiaodong G (2014) Facile synthesis of Li 3V 2(PO 4) 3/C nano-flakes with high-rate performance as cathode material for Li-ion battery. J Solid State Electrochem 181:215–221

    Google Scholar 

  24. Kosova NV, Devyatkina ET, Slobodyuk AB, Petrov SA (2012) Submicron LiFe1-y Mn y PO4 solid solutions prepared by mechanochemically assisted carbothermal reduction: the structure and properties. Electrochim Acta 59:404–411

    Article  CAS  Google Scholar 

  25. Zhong Y-J, Li J-T, Wu Z-G, Guo X-D, Zhong B-H, Sun S-G (2013) LiMn0.5Fe0.5PO4 solid solution materials synthesized by rheological phase reaction and their excellent electrochemical performances as cathode of lithium ion battery. J Power Sources 234:217–222

    Article  CAS  Google Scholar 

  26. Song J, Wang L, Shao G, Shi M, Ma Z, Wang G, Song W, Liu S, Wang C (2014) Controllable synthesis, morphology evolution and electrochemical properties of LiFePO4 cathode materials for Li-ion batteries. Phys Chem Chem Phys 1617:7728–7733

    Article  Google Scholar 

  27. Yang S-L, Ma R-G, Hu M-J, Xi L-J, Lu Z-G, Chung CY (2012) Solvothermal synthesis of nano-LiMnPO4 from Li3PO4 rod-like precursor: reaction mechanism and electrochemical properties. J Mater Chem 2248:25402–25408

    Article  Google Scholar 

  28. Miao X, Yan Y, Wang C, Cui L, Fang J, Yang G (2014) Optimal microwave-assisted hydrothermal synthesis of nanosized xLi2MnO3 · (1 − x) LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion battery. J Power Sources 247:219–227

    Article  CAS  Google Scholar 

  29. Guo XP, Wang M, Huang XL, Zhao PF, Liu XL, Che RC (2013) Direct evidence of antisite defects in LiFe0.5Mn0.5PO4 via atomic-level HAADF-EELS. J Mater Chem A 131:8775–8781

    Article  Google Scholar 

  30. Saravanan K, Vittal JJ, Reddy MV, Chowdari BVR, Balaya P (2010) Storage performance of LiFe1-x Mn x PO4 nanoplates (x = 0, 0.5, and 1). J Solid State Electrochem 1410:1755–1760

    Article  Google Scholar 

  31. Zong J, Peng Q, Yu J, Liu X (2013) Novel precursor of Mn(PO3(OH))center dot 3H2O for synthesizing LiMn0.5Fe0.5PO4 cathode material. J Power Sources 228:214–219

    Article  CAS  Google Scholar 

  32. Dong Y, Zhao Y, Duan H, Liang Z (2014) Enhanced electrochemical performance of LiMnPO4 by Li+-conductive Li3VO4 surface coatings. Electrochim Acta 132:244–250

    Article  CAS  Google Scholar 

  33. Ni J, Morishita M, Kawabe Y, Watada M, Takeichi N, Sakai T (2010) Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid. J Power Sources 1959:2877–2882

    Article  Google Scholar 

  34. Xiang W, Zhong YJ, Ji JY, Tang Y, Shen HH, Guo XD, Zhong BH, Dou SX, Zhang ZY (2015) Hydrothermal synthesis, evolution, and electrochemical performance of LiMn0.5Fe0.5PO4 nanostructures. Phys Chem Chem Phys 17:18629–18637

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the supports of the project funded by the China Postdoctoral Science Foundation (No. 2014M562322) and the AutoCRC Project 1-111 “Development of Advanced Electrode and Electrolytes for LIB.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Xiang, W., Shi, X. et al. Hierarchical LiMn0.5Fe0.5PO4/C nanorods with excellent electrochemical performance synthesized by rheological phase method as cathode for lithium ion battery. Ionics 22, 193–200 (2016). https://doi.org/10.1007/s11581-015-1539-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1539-3

Keywords

Navigation