Skip to main content

Advertisement

Log in

Storage performance of LiFe1 − x Mn x PO4 nanoplates (x = 0, 0.5, and 1)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Although LiFePO4 (LFP) is considered to be a potential cathode material for the lithium-ion batteries, its rate performance is significantly restricted by sluggish kinetics of electrons and lithium ions. Several attempts have been made so far to improve the performance of LiFePO4 by reducing the grain size, doping with aliovalent atoms, and coating conductive materials such as carbon or RuO2. We report here synthesis of LFP nanoplates by solvothermal method, tailoring the thickness as well as carbon coverage at surfaces to explore their influence on the storage performance. Due to the fact that Li+ ion diffuses along the b-axis, solvothermal method was aimed to control the thickness of nanoplates across the b-axis. We synthesized several nanoplates with various plate thicknesses along b-axis; among those, nanoplates of LFP with ∼30-nm-thick b-axis having thin (2–5 nm) and uniform layer of carbon coating exhibits high storage capacity as well as high rate performances. Thus, a favorable morphology for LiFePO4 has been achieved via solvothermal method for fast insertion/extraction of Li+ as compared to spherical nanoparticles of carbon-coated LFP. Galvanostatic cycling shows a capacity of 164 ± 5 mAh g−1 at 0.1 C rate, 100 ± 5 mAh g−1 at 10 C rate, and 46 ± 5 mAh g−1 at 30 C rate, with excellent capacity retention of up to 50 cycles. Further attempts have been made to synthesize LiMnPO4 (LMP) as well as Li(Fe1 − x Mn x )PO4/C (x = 0.5) nanoplates using solvothermal method. Although LiMnPO4 does not exhibit high storage behavior comparable with that of LiFePO4, the mixed systems have shown an impressive storage performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  2. Chung SY, Blocking JT, Ching YM (2002) Nat Matters 1:123–128

    Article  CAS  Google Scholar 

  3. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nat Matters 3:147–152

    Article  CAS  Google Scholar 

  4. Rousse G, Carvajal JR, Patoux S, Masquelier C (2003) Chem. Mater Des 15:4082–4090

    CAS  Google Scholar 

  5. Yamada A, Koizumi H, Nishimura SI, Sonoyama N, Kanno R, Yonemura M, Nakamura T, Kobayashi Y (2006) Nat Matters 5:357–360

    Article  CAS  Google Scholar 

  6. Andersson AS, Thomas JO (2001) J Power Sources 97–98:498–502

    Article  Google Scholar 

  7. Hu YS, Guo YG, Dominko R, Gaberscek M, Jamnik J, Maier J (2007) Adv. Mater Des 19:1963–1966

    CAS  Google Scholar 

  8. Ravet N, Abouimrane A, Armand M (2003) Nat Matters 2:702

    Article  CAS  Google Scholar 

  9. Ojczyk W, Marzec J, Wierczek KS, Zajac W, Molenda M, Dziembaj R, Molenda J (2007) J Power Sources 173:700–706

    Article  CAS  Google Scholar 

  10. Delacourt C, Laffont L, Bouchet R, Wurm V, Leriche JB, Morcrette M, Tarascon JM, Masquelier C (2005) J Electrochem Soc 152:A913–A921

    Article  CAS  Google Scholar 

  11. Amin R, Balaya P, Maier J (2007) Electrochem Solid-State Lett 10:A13–A16

    Article  CAS  Google Scholar 

  12. Morgan D, Van der Ven A, Ceder G (2004) Electrochem Solid-State Lett 7:A30–A32

    Article  CAS  Google Scholar 

  13. Maxisch T, Zhou F, Ceder G (2006) Phys Rev B 73:104301–104306

    Article  CAS  Google Scholar 

  14. Islam MS, Driscoll DJ, Fisher CAJ, Slater PR (2005) Chem Mater 17:5085–5092

    Article  CAS  Google Scholar 

  15. Fisher CAJ, Islam MS (2008) J Mater Chem 18:209–1215

    Article  CAS  Google Scholar 

  16. Huang H, Yin SC, Nazar LF (2001) Electrochem Solid-State Lett 4:A170–A172

    Article  CAS  Google Scholar 

  17. Chen Z, Dahn JR (2002) J Electrochem Soc 149:A1184–A1189

    Article  CAS  Google Scholar 

  18. Moskon J, Dominko R, Korosec RC, Gaberscek M, Jamnik J (2007) J Power Sources 174:683–688

    Article  CAS  Google Scholar 

  19. Ait Salah A, Mauger A, Zaghib K, Goodenough JB, Ravet N, Gauthier M, Gendron F, Julien CM (2006) J Electrochem Soc 153:A1692–A1701

    Article  CAS  Google Scholar 

  20. Saravanan K, Reddy MV, Balaya P, Gong H, Chowdari BVR, Vittal JJ (2009) J Mater Chem 19:605–610

    Article  CAS  Google Scholar 

  21. Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Goupil JM, Pejovnik S, Jamnik J (2006) J Power Sources 153:274–280

    Article  CAS  Google Scholar 

  22. Gabersceka M, Dominko R, Bele M, Remskar M, Hanzel D, Jamnik J (2005) Solid State Ionics 176:1801–1805

    Article  CAS  Google Scholar 

  23. Yang S, Zavaliji PY, Wittingham MS (2001) Electrochem Commun 3:505–508

    Article  CAS  Google Scholar 

  24. Barker J, Saidi MY, Swoyer JL (2003) Electrochem Solid-State Lett 6:A53–A55

    Article  CAS  Google Scholar 

  25. Kim DH, Kim J (2006) Electrochem Solid-State Lett 9:A439–A442

    Article  CAS  Google Scholar 

  26. Delacourt C, Poizot P, Levasseur S, Masquelier C (2006) Electrochem Solid-State Lett 9:A352–A355

    Article  CAS  Google Scholar 

  27. Arnold G, Garche J, Hemmer R, Strobele S, Vogler C, Mehrens MW (2003) J Power Sources 119–121:247–251

    Article  CAS  Google Scholar 

  28. Palomares V, Goni A, Muro IGD, Meatza ID, Bengoechea M, Miguel O, Rojo T (2007) J Power Sources 171:A484–A487

    Article  CAS  Google Scholar 

  29. Manthiram A, Vadivel Murugan A, Sarkar A, Muraliganth T (2008) Energy Environ Sci 1:621–638

    Article  CAS  Google Scholar 

  30. Vadivel Murugan A, Muraliganth T, Manthiram A (2008) Electrochem Commun 10:903–906

    Article  CAS  Google Scholar 

  31. Vadivel Murugan A, Muraliganth T, Manthiram A (2009) Inorg Chem 48:946–952

    Article  CAS  Google Scholar 

  32. Bilecka I, Hintennach A, Djerdj I, Novak P, Niederberger M (2009) J Mater Chem 19:5125–5128

    Article  CAS  Google Scholar 

  33. Chen G, Song X, Richardson TJ (2006) Electrochem Solid-State Lett 9:A295–A298

    Article  CAS  Google Scholar 

  34. Tanabe Y, Yamanaka J, Hoshi K, Migita H, Yasuda E (2001) Carbon 39:2347–2353

    Article  CAS  Google Scholar 

  35. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Carbon 43:1731–1742

    Article  CAS  Google Scholar 

  36. Song SW, Reade RP, Kostecki R, Striebel KA (2005) J Electrochem Soc 153:A12–A19

    Article  CAS  Google Scholar 

  37. Kuo Fey GT, Lu TL, Wu FY, Li WH (2008) J Solid State Electrochem 12:825–833

    Article  CAS  Google Scholar 

  38. Lua CZ, Feya GT, Kao HM (2009) J Power Sources 189:155–162

    Article  CAS  Google Scholar 

  39. Maccario M, Croguennec L, Desbat B, Couzi M, Cras F, Le Servantd L (2008) J Electrochemical Society 155:A879–886

    Article  CAS  Google Scholar 

  40. Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Electrochem Solid State Lett 6:A207–A209

    Article  CAS  Google Scholar 

  41. Doeff MM, Wilcox JD, Kostecki R, Lau G (2006) J Power Sources 163:180–184

    Article  CAS  Google Scholar 

  42. Hu Y, Doeff MM, Kostecki R, Finones R (2004) J Electrochem Soc 151:A1279–A1285

    Article  CAS  Google Scholar 

  43. Delacourt C, Poizot P, Morcrette M, Tarascon JM, Masquelier C (2004) Chem Mater 16:93–99

    Article  CAS  Google Scholar 

  44. Yamada A, Kudo Y, Liu K (2001) J Electrochem Soc 148:A1153–A1158

    Article  CAS  Google Scholar 

  45. Vadivel Murugan A, Muraliganth T, Manthiram A (2009) J Electrochem Soc 156:A79–A83

    Article  CAS  Google Scholar 

  46. Fang H, Li L, Yang Y, Yan G, Li G (2008) Chem Commun 1118–1120

  47. Wang D, Buqa H, Crouzet M, Deghenghi G, Drezen T, Exnar I, Kwon NH, Miners JH, Poletto L, Graetzel M (2009) J Power Sources 189:624–628

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Education, Singapore, for funding through NUS FRC Grant No. R143-000-283-112 and FRC Grant No. R265-000-274-133. The authors also thank Dr. Nagarathinam Mangayarkarasi, NUS for their valuable comments, and Dr. Sudip Batabyal, Department of Chemistry, NUS for help in SEM analysis. Saravanan would like to thank NUS for the NUSNNI Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jagadese J. Vittal or Palani Balaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saravanan, K., Vittal, J.J., Reddy, M.V. et al. Storage performance of LiFe1 − x Mn x PO4 nanoplates (x = 0, 0.5, and 1). J Solid State Electrochem 14, 1755–1760 (2010). https://doi.org/10.1007/s10008-010-1031-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1031-y

Keywords

Navigation