Skip to main content
Log in

Preparation and characterization of hexagonal boron nitride and PAMPS-NMPA-based thin composite films and investigation of their membrane properties

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The preparation, thermal, morphological, and ion-conducting properties of new composite membranes based on poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) and nitrilotri(methylphosphonic acid) (NMPA)/hexagonal boron nitride (hBN) were carried out throughout this work. Fourier transform infrared (FTIR) spectroscopy was used to characterize the interactions between host polymer, NMPA, and inorganic additive, hBN. Thermal properties of the materials were examined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) tests. TGA results illustrated that all composite membranes are thermally stable up to 200 °C. The surface topography of the films was investigated by scanning electron microscopy (SEM) and verified that hBN uniformly dispersed into the PAMPS-NMPA matrix. The crystallinity of the membranes was characterized by using X-ray diffraction (XRD). X-ray patterns support semicrystalline nature of the composite materials. At anhydrous conditions, the maximum proton conductivity was found as 3.2 × 10−5 S cm−1 at 150 °C for PAMPS-NMPA-3hBN via impedance analyzer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim DJ, Jo MJ, Nam SY (2015) A review of polymer-nanocomposite electrolyte membranes for fuel cell application. J Ind Eng Chem 21:36–52. doi:10.1016/j.jiec.2014.04.030

    Article  CAS  Google Scholar 

  2. Zhao Z, Pu H, Chang Z, Pan H (2014) A versatile strategy towards semi-interpenetrating polymer network for proton exchange membranes. Int J Hydrog Energy 39(12):6657–6663. doi:10.1016/j.ijhydene.2014.01.210

    Article  CAS  Google Scholar 

  3. Jayakumar A, Pethaiah SS, Ramos M, Robertson J, Jumaily AA (2015) A technical review on gas diffusion, mechanism and medium of PEM fuel cell. Ionics 21(1):1–18. doi:10.1007/s11581-014-1322-x

    Article  CAS  Google Scholar 

  4. Sinirlioglu D, Muftuoglu AE, Golcuk K, Bozkurt A (2014) Investigation of proton conductivity of anhydrous proton exchange membranes (PEMs) prepared via grafting vinyltriazole onto alkaline treated PVDF. J Polym Sci A Polym Chem 52(13):1885–1897. doi:10.1002/pola.27197

    Article  CAS  Google Scholar 

  5. Pethaiah SS, Kalaignan GP, Ulaganathan M, Arunkumar J (2011) Preparation of durable nanocatalyzed MEA for PEM fuel cell applications. Ionics 17(4):361–366. doi:10.1007/s11581-011-0526-6

    Article  CAS  Google Scholar 

  6. Sinirlioglu D, Muftuoglu AE, Bozkurt A (2014) Investigation of proton conductivity of inorganic–organic hybrid membranes based on boronic acid and tetrazole. J Polym Res 21(8):526. doi:10.1007/s10965-014-0526-0

    Article  Google Scholar 

  7. Celik SU, Bozkurt A, Hosseini SS (2012) Alternatives toward proton conductive anhydrous membranes for fuel cells: heterocyclic protogenic solvents comprising polymer electrolytes. Prog Polym Sci 37(9):1265–1291. doi:10.1016/j.progpolymsci.2011.11.006

    Article  CAS  Google Scholar 

  8. Cho J, Oh H, Park J, Min K, Lee E, Jyoung J-Y (2014) Effect of the micro porous layer design on the dynamic performance of a proton exchange membrane fuel cell. Int J Hydrog Energy 39(1):459–468. doi:10.1016/j.ijhydene.2013.10.041

    Article  CAS  Google Scholar 

  9. Sinirlioglu D, Celik SU, Muftuoglu AE, Bozkurt A (2015) Novel composite polymer electrolyte membranes based on poly(vinyl phosphonic acid) and poly (5-(methacrylamido)tetrazole). Polym Eng Sci 55(2):260–269. doi:10.1002/pen.23890

    Article  CAS  Google Scholar 

  10. Sinirlioglu D, Muftuoglu AE, Bozkurt A (2013) 5-(methacrylamido)tetrazole and vinyl triazole based copolymers as novel anhydrous proton conducting membranes. J Polym Res 20(9):242. doi:10.1007/s10965-013-0242-1

    Article  Google Scholar 

  11. Sinirlioglu D, Celik SU, Muftuoglu AE, Bozkurt A (2014) Proton conducting copolymer electrolytes based on vinyl phosphonic acid and 5-(methacrylamido)tetrazole. Macromol Chem Phys 215(3):269–279. doi:10.1002/macp.201300655

    Article  CAS  Google Scholar 

  12. Taguet A, Cassagnau P, Lopez-Cuesta JM (2014) Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Prog Polym Sci 39(8):1526–1563. doi:10.1016/j.progpolymsci.2014.04.002

    Article  CAS  Google Scholar 

  13. Hong JP, Yoon SW, Hwang T, Oh JS, Hong SC, Lee Y, Nam JD (2012) High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers. Thermochim Acta 537:70–75. doi:10.1016/j.tca.2012.03.002

    Article  CAS  Google Scholar 

  14. Lahiri D, Rouzaud F, Richard T, Keshri AK, Bakshi SR, Kos L, Agarwal A (2010) Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater 6:3524–3533. doi:10.1016/j.actbio.2010.02.044

    Article  CAS  Google Scholar 

  15. Raman C, Meneghetti P (2008) Boron nitride finds new applications in thermoplastic compounds. Plastics, Additives Compounding 10(3):26–29. doi:10.1016/S1464-391X(08)70092-8

    Article  CAS  Google Scholar 

  16. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224. doi:10.1038/nnano.2009.58

    Article  CAS  Google Scholar 

  17. Pease RS (1952) An X-ray study of boron nitride. Acta Crystallogr 5:356–361. doi:10.1107/S0365110X52001064

    Article  CAS  Google Scholar 

  18. Madakbas S, Cakmakcı E, Kahraman MV (2013) Preparation and thermal properties of polyacrylonitrile/hexagonal boron nitride composites. Thermochim Acta 552:1–4. doi:10.1016/j.tca.2012.11.011

    Article  CAS  Google Scholar 

  19. Salles V, Bernard S, Chiriac R, Miele P (2012) Structural and thermal properties of boron nitride nanoparticles. J Eur Ceram Soc 32(9):1867–1871. doi:10.1016/j.jeurceramsoc.2011.09.002

    Article  CAS  Google Scholar 

  20. Kemaloglu S, Ozkoc G, Aytac A (2010) Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochim Acta 499(1–2):40–47. doi:10.1016/j.tca.2009.10.020

    Article  CAS  Google Scholar 

  21. Yu J, Huang X, Wu C, Wu X, Wang G, Jiang P (2012) Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer 53(2):471–480. doi:10.1016/j.polymer.2011.12.040

    Article  CAS  Google Scholar 

  22. Lin Li T, Lien S, Hsu C (2010) Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. J Phys Chem B 114(20):6825–6829. doi:10.1021/jp101857w

    Article  Google Scholar 

  23. Hou X, Yu Z, Li Y, Chou KC (2014) Preparation and properties of hexagonal boron nitride fibers used as high temperature membrane filter. Mater Res Bull 49:39–43. doi:10.1016/j.materresbull.2013.08.041

    Article  CAS  Google Scholar 

  24. Pakdel A, Bando Y, Golberg D (2014) Plasma-assisted interface engineering of boron nitride nanostructure films. ACS Nano 8(10):10631–10639

    Article  CAS  Google Scholar 

  25. Pakdel A, Zhi C, Bando Y, Golberg D (2012) Low-dimensional boron nitride nanomaterials. Mater Today 15(6):256–265. doi:10.1016/S1369-7021(12)70116-5

    Article  CAS  Google Scholar 

  26. Zhi C, Bando Y, Tang C, Kuwahara H, Golberg D (2009) Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater 21:2889–2893. doi:10.1002/adma.200900323

    Article  CAS  Google Scholar 

  27. Warner JH, Rummeli MH, Bachmatiuk A, Buchner B (2010) Atomic resolution imaging and topography of hexagonal boron nitride sheets produced by chemical exfoliation. ACS Nano 4(3):1299–1304. doi:10.1021/nn901648q

    Article  CAS  Google Scholar 

  28. Wang Y, Shi ZX, Yin J (2011) Boron nitride nanosheets: large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole. J Mater Chem 21:11371–11377. doi:10.1039/C1JM10342C

    Article  CAS  Google Scholar 

  29. Sainsbury T, Satti A, May P, Wang Z, McGovern I, Gun’ko YK, Coleman J (2012) Oxygen radical functionalization of boron nitride nanosheets. J Am Chem Soc 134:18758–18771. doi:10.1021/ja3080665

    Article  CAS  Google Scholar 

  30. Lin Y, Williams TV, Connell JW (2010) Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett 1:277–283. doi:10.1021/jz9002108

    Article  Google Scholar 

  31. Pakdel A, Bando Y, Golberg D (2014) Nano boron nitride flatland. Chem Soc Rev 43:934–959. doi:10.1039/c3cs60260e

    Article  CAS  Google Scholar 

  32. Sinirlioglu D, Muftuoglu AE, Bozkurt A (2014) Preparation of thin films from new azolic copolymers and investigation of their membrane properties. J Macromol Sci Pure Appl Chem 51(5):420–434. doi:10.1080/10601325.2014.89

    Article  CAS  Google Scholar 

  33. Gustian I, Celik SU, Suratno W, Bozkurt A (2011) Proton conducting composite membranes based on poly(1-vinyl-1,2,4-triazole) and nitrilotri (methyl triphosphonic acid). J Phys Chem Solids 72(11):1377–1380. doi:10.1016/j.jpcs.2011.08.019

    Article  CAS  Google Scholar 

  34. Aslan A, Bozkurt A (2014) Nanocomposite membranes based on sulfonated polysulfone and sulfated nano-titania/NMPA for proton exchange membrane fuel cells. Solid State Ionics 255:89–95. doi:10.1016/j.ssi.2013.11.054

    Article  CAS  Google Scholar 

  35. Aslan A, Bozkurt A (2012) Nanocomposite polymer electrolyte membranes based on poly(vinylphosphonic acid)/sulfated nano-titania. J Power Sources 217:158–163. doi:10.1016/j.jpowsour.2012.05.011

    Article  CAS  Google Scholar 

  36. Wu H, Hou W, Wang J, Xiaoa L, Jiang Z (2010) Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix. J Power Sources 195(13):4104–4113. doi:10.1016/j.jpowsour.2010.01.079

    Article  CAS  Google Scholar 

  37. Aslan A, Bozkurt A (2011) Proton conducting properties of ionically cross-linked poly(1-vinyl-1,2,4-triazole) and poly(2-acrylamido-2-methyl-1-propanesulphonic acid) electrolytes. Polym Bull 66:1099–1110. doi:10.1007/s00289-010-0400-0

    Article  CAS  Google Scholar 

  38. Huang MT, Ishida H (2005) Surface study of hexagonal boron nitride powder by diffuse reflectance Fourier transform infrared spectroscopy. Surf Interface Anal 37(7):621–627. doi:10.1002/sia.2055

    Article  CAS  Google Scholar 

  39. Zhi CY, Bando Y, Tang CC, Kuwahara H, Golberg D (2009) Large-scale fabrication of few-atomic-layer boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater 21(28):2889–2893. doi:10.1002/adma.200900323

    Article  CAS  Google Scholar 

  40. Dibandjo P, Bois L, Chassagneux F, Cornu D, Letoffe JM, Toury B (2005) Synthesis of boron nitride with ordered mesostructure. Adv Mater 17(5):571–574. doi:10.1002/adma.200401501

    Article  CAS  Google Scholar 

  41. Mahrenia A, Mohamad A, Kadhuma AAH, Dauda WRW, Iyuke SE (2009) Nafion/silicon oxide/phosphotungstic acid nanocomposite membrane with enhanced proton conductivity. J Membr Sci 327(1–2):32–40. doi:10.1016/j.memsci.2008.10.048

    Article  Google Scholar 

  42. Joni IM, Balgis R, Ogi T, Waki TI, Okuyama K (2011) Surface functionalization for dispersing and stabilizing hexagonal boron nitride nanoparticle by bead milling. Colloids Surf A Physicochem Eng Asp 388(1–3):49–58. doi:10.1016/j.colsurfa.2011.08.007

    Article  CAS  Google Scholar 

  43. Kovtyukhova NI, Wang Y, Lv R, Terrones M, Crespi VH, Mallouk TE (2013) Reversible intercalation of hexagonal boron nitride with Brønsted acids. J Am Chem Soc 135(22):8372–8381. doi:10.1021/ja403197h

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Fatih University-BINATAM center for SEM and XRD measurements. This work was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) under contact number 112M488.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayhan Bozkurt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutgun, M.S., Sinirlioglu, D., Celik, S.U. et al. Preparation and characterization of hexagonal boron nitride and PAMPS-NMPA-based thin composite films and investigation of their membrane properties. Ionics 21, 2871–2878 (2015). https://doi.org/10.1007/s11581-015-1465-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1465-4

Keywords

Navigation