Skip to main content
Log in

Li2MnSiO4/carbon nanofiber cathodes for Li-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Pure single-phase Li2MnSiO4 nanoparticle-embedded carbon nanofibers have been prepared for the first time via a simple sol-gel and electrospinning technique. They exhibit an improved electrochemical performance over conventional carbon-coated Li2MnSiO4 nanoparticle electrodes, including a high discharge capacity of ∼200 mAh g−1, at a C/20 rate, with the retention of 77 % over 20 cycles and a 1.6-fold higher discharge capacity at a 1 C rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458(7235):190–193. doi:10.1038/Nature07853

    Article  CAS  Google Scholar 

  2. Kang KS, Meng YS, Breger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763):977–980. doi:10.1126/science.1122152

    Article  CAS  Google Scholar 

  3. Recham N, Chotard JN, Dupont L, Delacourt C, Walker W, Armand M, Tarascon JM (2010) A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nat Mater 9(1):68–74. doi:10.1038/Nmat2590

    Article  CAS  Google Scholar 

  4. Morcrette M, Rozier P, Dupont L, Mugnier E, Sannier L, Galy J, Tarascon JM (2003) A reversible copper extrusion-insertion electrode for rechargeable Li batteries. Nat Mater 2(11):755–761. doi:10.1038/Nmat1002

    Article  CAS  Google Scholar 

  5. Jung HG, Jang MW, Hassoun J, Sun YK, Scrosati B (2011) A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O-4 lithium-ion battery. Nat Commun 2:516. doi:10.1038/Ncomms1527

    Article  Google Scholar 

  6. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  7. Song T, Xia JL, Lee JH, Lee DH, Kwon MS, Choi JM, Wu J, Doo SK, Chang H, Il Park W, Zang DS, Kim H, Huang YG, Hwang KC, Rogers JA, Paik U (2010) Arrays of sealed silicon nanotubes as anodes for lithium Ion batteries. Nano Lett 10(5):1710–1716. doi:10.1021/Nl100086e

    Article  CAS  Google Scholar 

  8. Wang Y, Zeng HC, Lee JY (2006) Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv Mater 18(5):645. doi:10.1002/adma.200501883

    Article  CAS  Google Scholar 

  9. Hwang TH, Lee YM, Kong BS, Seo JS, Choi JW (2012) Electrospun core-shell fibers for robust silicon nanoparticle-based lithium Ion battery anodes. Nano Lett 12(2):802–807. doi:10.1021/Nl203817r

    Article  CAS  Google Scholar 

  10. Gong ZL, Yang Y (2011) Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energ Environ Sci 4(9):3223–3242. doi:10.1039/C0ee00713g

    Article  CAS  Google Scholar 

  11. Islam MS, Dominko R, Masquelier C, Sirisopanaporn C, Armstrong AR, Bruce PG (2011) Silicate cathodes for lithium batteries: alternatives to phosphates? J Mater Chem 21(27):9811–9818. doi:10.1039/C1jm10312a

    Article  CAS  Google Scholar 

  12. Kuganathan N, Islam MS (2009) Li2MnSiO4 lithium battery material: atomic-scale study of defects, lithium mobility, and trivalent dopants. Chem Mater 21(21):5196–5202. doi:10.1021/Cm902163k

    Article  CAS  Google Scholar 

  13. Masquelier C, Croguennec L (2013) Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 113(8):6552–6591. doi:10.1021/Cr3001862

    Article  CAS  Google Scholar 

  14. Wang HL, Yang Y, Liang YY, Cui LF, Casalongue HS, Li YG, Hong GS, Cui Y, Dai HJ (2011) LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Edit 50(32):7364–7368. doi:10.1002/anie.201103163

    Article  CAS  Google Scholar 

  15. Nishimura SI, Hayase S, Kanno R, Yashima M, Nakayama N, Yamada A (2008) Structure of Li2FeSiO4. J Am Chem Soc 130(40):13212–13213. doi:10.1021/Ja805543p

    Article  CAS  Google Scholar 

  16. Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 7(2):156–160. doi:10.1016/j.elecom.2004.11.008

    Article  CAS  Google Scholar 

  17. Santamaria-Perez D, Amador U, Tortajada J, Dominko R, Arroyo-de Dompablo ME (2012) High-pressure investigation of Li2MnSiO4 and Li2CoSiO4 electrode materials for lithium-ion batteries. Inorg Chem 51(10):5779–5786. doi:10.1021/Ic300320r

    Article  CAS  Google Scholar 

  18. Ellis BL, Makahnouk WRM, Rowan-Weetaluktuk WN, Ryan DH, Nazar LF (2010) Crystal structure and electrochemical properties of A(2)MPO(4)F fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni). Chem Mater 22(3):1059–1070. doi:10.1021/Cm902023h

    Article  CAS  Google Scholar 

  19. Seo DH, Kim H, Park I, Hong J, Kang K (2011) Polymorphism and phase transformations of Li2-xFeSiO4 (0< = × < = 2) from first principles. Phys Rev B 84(22):220106. doi:10.1103/Physrevb.84.220106

    Article  Google Scholar 

  20. Ghosh P, Mahanty S, Basu RN (2009) Improved electrochemical performance of Li2MnSiO4/C composite synthesized by combustion technique. J Electrochem Soc 156(8):A677–A681. doi:10.1149/1.3141517

    Article  CAS  Google Scholar 

  21. Aravindan V, Karthikeyan K, Kang KS, Yoon WS, Kim WS, Lee YS (2011) Influence of carbon towards improved lithium storage properties of Li2MnSiO4 cathodes. J Mater Chem 21(8):2470–2475. doi:10.1039/C0jm03471a

    Article  CAS  Google Scholar 

  22. Dominko R, Bele M, Kokalj A, Gaberscek M, Jamnik J (2007) Li2MnSiO4 as a potential Li-battery cathode material. J Power Sources 174(2):457–461. doi:10.1016/j.jpowsour.2007.06.188

    Article  CAS  Google Scholar 

  23. Dominko R (2008) Li2MSiO4 (M = Fe and/or Mn) cathode materials. J Power Sources 184(2):462–468. doi:10.1016/j.jpowsour.2008.02.089

    Article  CAS  Google Scholar 

  24. Muraliganth T, Stroukoff KR, Manthiram A (2010) Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries. Chem Mater 22(20):5754–5761. doi:10.1021/Cm102058n

    Article  CAS  Google Scholar 

  25. Aravindan V, Karthikeyan K, Ravi S, Amaresh S, Kim WS, Lee YS (2010) Adipic acid assisted sol-gel synthesis of Li2MnSiO4 nanoparticles with improved lithium storage properties. J Mater Chem 20(35):7340–7343. doi:10.1039/C0jm01635g

    Article  CAS  Google Scholar 

  26. Aravindan V, Karthikeyan K, Amaresh S, Lee YS (2011) Superior lithium storage properties of carbon coated Li2MnSiO4 cathodes. Electrochem Solid St 14(4):A33–A35. doi:10.1149/1.3543568

    Article  CAS  Google Scholar 

  27. Rangappa D, Murukanahally KD, Tomai T, Unemoto A, Honma I (2012) Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. Nano Lett 12(3):1146–1151. doi:10.1021/Nl202681b

    Article  CAS  Google Scholar 

  28. Devaraju MK, Tomai T, Unemoto A, Honma I (2013) Novel processing of lithium manganese silicate nanomaterials for Li-ion battery applications. Rsc Adv 3(2):608–615. doi:10.1039/C2ra22409g

    Article  CAS  Google Scholar 

  29. Fisher CAJ, Kuganathan N, Islam MS (2013) Defect chemistry and lithium-ion migration in polymorphs of the cathode material Li2MnSiO4. J Mater Chem A 1(13):4207–4214. doi:10.1039/C3ta00111c

    Article  CAS  Google Scholar 

  30. Zhang S, Lin Z, Ji LW, Li Y, Xu GJ, Xue LG, Li SL, Lu Y, Toprakci O, Zhang XW (2012) Cr-doped Li2MnSiO4/carbon composite nanofibers as high-energy cathodes for Li-ion batteries. J Mater Chem 22(29):14661–14666. doi:10.1039/C2jm32213g

    Article  CAS  Google Scholar 

  31. Dominko R, Bele M, Gaberscek M, Meden A, Remskar M, Jamnik J (2006) Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochem Commun 8(2):217–222. doi:10.1016/j.elecom.2005.11.010

    Article  CAS  Google Scholar 

  32. Kuezma M, Devaraj S, Balaya P (2012) Li2MnSiO4 obtained by microwave assisted solvothermal method: electrochemical and surface studies. J Mater Chem 22(39):21279–21284. doi:10.1039/C2jm34455f

    Article  CAS  Google Scholar 

  33. Kempaiah DM, Rangappa D, Honma I (2012) Controlled synthesis of nanocrystalline Li2MnSiO4 particles for high capacity cathode application in lithium-ion batteries. Chem Commun 48(21):2698–2700. doi:10.1039/C2cc17234h

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Research Foundation of Korea (NRF) through Grant No. K20704000003TA050000310, the Global Research Laboratory (GRL) Program provided by Ministry of Science, ICT (Information and Communication Technologies) and Future Planning in 2013, the International Cooperation program of the Korea Insitute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy (No. 2011 T100100369).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linda F. Nazar or Ungyu Paik.

Additional information

Hyunjung Park and Taeseup Song contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H., Song, T., Tripathi, R. et al. Li2MnSiO4/carbon nanofiber cathodes for Li-ion batteries. Ionics 20, 1351–1359 (2014). https://doi.org/10.1007/s11581-014-1105-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1105-4

Keywords

Navigation