Skip to main content
Log in

Application of an ionic liquid-functionalized Mg2Al layered double hydroxide for the electrochemical myoglobin biosensor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, an ionic liquid 1-carboxyl-methyl-3-methylimidazolium tetrafluoroborate (CMMIMBF4)-functionalized Mg2Al layered double hydroxide (LDH) was synthesized and further used for the immobilization of myoglobin (Mb) on the surface of a carbon ionic liquid electrode to get a new electrochemical biosensor. Ultraviolet–visible and Fourier transform–infrared spectroscopies confirmed that Mb in the CMMIMBF4-LDH remained its native secondary structure, which was attributed to the biocompatibility of the materials used. On the cyclic voltammograms, a pair of well-defined redox peaks appeared, indicating that direct electron transfer of Mb was realized in the modified electrode. The formal peak potential was calculated as −0.209 V (vs. SCE), which was the typical characteristics of the Mb heme Fe(III)/Fe(II) redox couples. The fabricated Mb sensor exhibited good electrocatalytic activity to the reduction of trichloroacetic acid in the range from 1.0 to 17.0 mmol L−1 with the detection limit as 0.344 mmol L−1 (3σ), and the apparent Michaelis–Menten constant was calculated as 13.5 mmol L−1. Thus, the ionic liquid-functionalized LDH exhibited the potential application in the electrochemical sensor for redox proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mousty C (2004) Sensors and biosensors based on clay-modified electrodes—new trends. App Clay Sci 27:159–177

    Article  CAS  Google Scholar 

  2. Chen H, Mousty C, Cosnier S, Silveira C, Moura JJG, Almeida MG (2007) Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by [ZnCr-AQS] LDH. Electrochem Commun 9:2240–2245

    Article  CAS  Google Scholar 

  3. Qiu JB, Villemure G (1995) Anionic clay modified electrodes: electrochemical activity of nickel (II) site in layered double hydroxide films. J Electroanal Chem 395:159–166

    Article  Google Scholar 

  4. Shan D, Yao WJ, Xue HG (2006) Amperometric detection of glucose with glucose oxidase immobilized in layered double hydroxides. Electroanalysis 18:1485–1489

    Article  CAS  Google Scholar 

  5. Zhao H, Nagy KL (2004) Dodecyl sulfate-hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. J Colloid Interf Sci 274:613–624

    Article  CAS  Google Scholar 

  6. An Z, Lu S, Wang Y (2009) Colloidal assembly of proteins with delaminated lamellas of layered metal hydroxide. Langmuir 25:10704–10710

    Article  CAS  Google Scholar 

  7. Li MG, Chen SH, Ni F, Wang YL (2008) Layered double hydroxides functionalized with anionic surfactant: direct electrochemistry and electrocatalysis of hemoglobin. Electrochim Acta 53:7255–7260

    Article  CAS  Google Scholar 

  8. Bellezza F, Cipiciani A, Latterini L, Posati T, Sassi P (2009) Structure and catalytic behavior of myoglobin adsorbed onto nanosized hydrotalcites. Langmuir 25:10918–10924

    Article  CAS  Google Scholar 

  9. Chen X, Fu C, Wang Y, Yang W, Evans DG (2008) Direct electrochemistry and electrocatalysis based on a film of horseradish peroxidase intercalated into Ni-Al layered double hydroxide nanosheets. Biosens Bioelectron 24:356–361

    Article  CAS  Google Scholar 

  10. Maleki N, Safavi A, Tajabadi F (2006) High-performance carbon composite electrode based on an ionic liquid as a binder. Anal Chem 78:3820–3826

    Article  CAS  Google Scholar 

  11. Sun W, Li YZ, Duan YY, Jiao K (2008) Direct electrocatalytic oxidation of adenine and guanine on carbon ionic liquid electrode and the simultaneous determination. Biosens Bioelectron 24:988–993

    Article  CAS  Google Scholar 

  12. Opallo M, Lesniewski A (2011) A review on electrodes modified with ionic liquids. J Electroanal Chem 656:2–16

    Article  CAS  Google Scholar 

  13. Wei D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 607:126–135

    Article  CAS  Google Scholar 

  14. Zheng JB, Zhang Y, Yang PP (2007) An ionic liquid-type carbon paste electrode for electrochemical investigation and determination of calcium dobesilate. Talanta 73:920–925

    Article  CAS  Google Scholar 

  15. Zhang Y, Zheng JB (2007) Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode. Electrochim Acta 52:7210–7216

    Article  CAS  Google Scholar 

  16. Gao HW, Qi XW, Xu L, Wu J, Sun W (2012) Electrochemical detection of guanosine-5′-triphosphate with a pyridinium-based carbon ionic liquid electrode. Monatsh Chem 143:703–709

    Article  CAS  Google Scholar 

  17. Zhu ZH, Qu LN, Niu QJ, Zeng Y, Sun W, Huang XT (2011) Urchinlike MnO2 nanoparticles for the direct electrochemistry of hemoglobin with carbon ionic liquid electrode. Biosens Bioelectron 26:2119–2124

    Article  CAS  Google Scholar 

  18. Ruan CX, Li TT, Niu QJ, Lu M, Lou J, Gao WM, Sun W (2012) Electrochemical myoglobin biosensor based on graphene-ionic liquid-chitosan bionanocomposites: direct electrochemistry and electrocatalysis. Electrochim Acta 64:183–189

    Article  CAS  Google Scholar 

  19. Makaev F, Styngach E, Shargarovskii V, Bets L, Vlad L, Barba A (2010) Imidazolium salts with a free carboxy group as new catalysts of the Biginelli reaction. Russ J Org Chem 46:610–611

    Article  CAS  Google Scholar 

  20. Inacio J, Taviot Gueho C, Forano C, Besse JP (2001) Adsorption of MCPA pesticide by MgAl-layered double hydroxides. Appl Clay Sci 18:255–264

    Article  CAS  Google Scholar 

  21. Moyo L, Nhlapo N, Focke WW (2008) A critical assessment of the methods for intercalating anionic surfactants in layered double hydroxides. J Mater Sci 43:6144–6158

    Article  CAS  Google Scholar 

  22. Zhao JK, Fu XM, Zhang SZ, Hou WG (2011) Water dispersible avermectin-layered double hydroxide nanocomposites modified with sodium dodecyl sulfate. Appl Clay Sci 51:460–466

    Article  CAS  Google Scholar 

  23. Clearfield A, Kieke M, Kwan J, Colon JL, Wang RC (1991) Intercalation of dodecyl-sulfate into layered double hydroxides. Mol Recognit Chem 11:361–378

    Article  CAS  Google Scholar 

  24. Xiong Z, Xu Y (2007) Immobilization of palladium phthalocyaninesulfonate onto anionic clay for sorption and oxidation of 2,4,6-trichlorophenol under visible light irradiation. Chem Mater 19:1452–1458

    Article  CAS  Google Scholar 

  25. Kauppinen JK, Moffat DJ, Mantsch HH, Cameron DG (1981) Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Appl Spectrosc 35:271–276

    Article  CAS  Google Scholar 

  26. Fehér E, Major B, Bélafi-Bakó K, Gubicza L (2007) On the background of enhanced stability and reusability of enzymes in ionic liquids. Biochem Soc Trans 35:1624–1627

    Article  Google Scholar 

  27. Rusling JF (1998) Enzyme bioelectrochemistry in cast biomembrane-like films. Acc Chem Res 31:363–369

    Article  CAS  Google Scholar 

  28. Laviron E (1979) The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J Electroanal Chem 100:263–270

    Article  CAS  Google Scholar 

  29. Zhao YD, Bi YH, Zhang WD, Luo QM (2005) The interface behavior of hemoglobin at carbon nanotube and the detection for H2O2. Talanta 65:489–494

    Article  CAS  Google Scholar 

  30. Li Q, Luo G, Feng J (2001) Direct electron transfer for heme proteins assembled on nanocrystalline TiO2 film. Electroanalysis 13:359–363

    Article  CAS  Google Scholar 

  31. Packer JE, Slater TF, Willson RL (1978) Reactions of the carbon tetrachloride-related peroxy free radical (CCl3O2) with amino acids: pulse radiolysis evidence. Life Sci 23:2617–2620

    Article  CAS  Google Scholar 

  32. Ma X, Liu XJ, Xiao H, Li GX (2005) Direct electrochemistry and electrocatalysis of hemoglobin in poly-3-hydroxybutyrate membrane. Biosens Bioelectron 20:1836–1842

    Article  CAS  Google Scholar 

  33. He PL, Hu NF, Zhou G (2002) Assembly of electroactive layer-by-layer films of hemoglobin and polycationic poly(diallyldimethylammonium). Biomacromolecules 3:139–146

    Article  CAS  Google Scholar 

  34. Sun H, Hu NF (2004) Voltammetric studies of hemoglobin-coated polystyrene latex bead films on pyrolytic graphite electrodes. Biophys Chem 110:297–308

    Article  CAS  Google Scholar 

  35. Wang SF, Chen T, Zhang ZL, Shen XC, Lu ZX, Pang DW, Wong KY (2005) Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids. Langmuir 21:9260–9266

    Article  CAS  Google Scholar 

  36. Sun W, Wang DD, Li GC, Zhai ZQ, Zhao RJ, Jiao K (2008) Direct electron transfer of hemoglobin in a CdS nanorods and Nafion composite film on carbon ionic liquid electrode. Electrochim Acta 53:8217–8221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the financial support of the Natural Science Foundation (No. 51363008), the Natural Science Foundation of Jiangxi Province (20122BAB206012), the Open Foundation from the Key Laboratory of Active Material and Modern Analysis Technology, SOA (MBSMAT-2012-07 and MBSMAT-2013-01), and the Youth Foundation of the Jiangxi Provincial Education Department (GJJ11222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, J., Lu, Y., Zhan, T. et al. Application of an ionic liquid-functionalized Mg2Al layered double hydroxide for the electrochemical myoglobin biosensor. Ionics 20, 1471–1479 (2014). https://doi.org/10.1007/s11581-014-1088-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1088-1

Keywords

Navigation