Skip to main content
Log in

Structural and electrical properties of nanostructured cerium phosphate

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Cerium phosphate nanomaterials with different morphologies and sizes were synthesized via a hydrothermal process at 150 °C using cetyl-trimethyl-ammonium-bromide and ethylene-diamine-tetra acid as surfactants. The obtained samples were characterized by X-ray diffraction and a scanning electron microscope. A possible growth mechanism was proposed to reveal the formation process. The structural properties and the electrical conductivities of CePO4 nanomaterials were studied. The activation energies were obtained from Arrhenius plots where E a = 1.06 eV. The ac conductivity at different temperatures for CePO4 nanomaterials showed frequency independence in the lower frequency range. The dielectric measurements were carried out as a function of frequency and temperature. Variation of the dielectric properties and the ac conductivity with frequency revealed that the dispersion is due to a Maxwell-Wagner type of interfacial polarization in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jun A, Yoo S, Gwon O, Shin J, Kim G (2013) Electr chim Acta 89:372–376

    Google Scholar 

  2. Adelstein N, Mun BS, Ray HL, Ross PN Jr, Neaton JB, De Jonghe L (2011) Phys Rev B 83:205104

    Article  Google Scholar 

  3. Zhou F, Kang KS, Maxisch T, Ceder G, Morgan D (2004) Solid State Commun 132:181–186

    Article  CAS  Google Scholar 

  4. Moral E, Fagg D, Chinarro E, Abrantes J, Jurado J, Mather G (2009) Ceram Int 35:1481–1486

    Article  Google Scholar 

  5. Koops CG (1951) Phy Rev 83:121–124

    Article  CAS  Google Scholar 

  6. Lee JS, Park EC, Lee SH, Lee DS, Lee YJ, Kim JS, Kim IW, Jin BM (2005) Mat Chem Phys 90:381–384

    Article  CAS  Google Scholar 

  7. Park JH, Kim CS, Bae JS, Choi BC, Jeong JH, Moon BK, Seo HJ, Kim IW, Kim JS (2003) Solid State Commun 126:635–645

    Article  CAS  Google Scholar 

  8. Park JH, Kim CS, Choi BC, Jeong JH, Moon BK, Seo HJ, Kim IW, Kim JS (2003) Solid State Commun 127:315–322

    Article  CAS  Google Scholar 

  9. Meyssamy H, Riwotzki K, Kornowski A, Naused S, Haase M (1999) Adv Mater 11:834–840

    Article  Google Scholar 

  10. Bu WB, Hua ZL, Chen HR, Shi JL (2005) J Phys Chem B 109:14461–14464

    Article  CAS  Google Scholar 

  11. Li B, Shen LY, Liu XZ, Wang TM (2000) J Mater Sci Lett 19:343–347

    Article  Google Scholar 

  12. Hen P, Mah T (1997) J Mater Sci 32:3863–3867

    Article  Google Scholar 

  13. Rappaz M, Abraham M, Ramey JO, Boatner LA (1981) Phys Rev B 23:1012–1030

    Article  CAS  Google Scholar 

  14. Xing Y, Li M, Davis SA, Mann S (2006) J Phys Chem B Let 110:1111–1113

    Article  CAS  Google Scholar 

  15. Rajesh K, Mukundan P, Krishna Pillai P, Nair VR, Warrier KGK (2004) Chem Mater 16:2700–2705

    Article  CAS  Google Scholar 

  16. Cao MH, Hu CW, Wu QY, Guo CX, Qi YJ, Wang EB (2005) Nanotechnology 16:282–285

    Article  CAS  Google Scholar 

  17. Bu W, Hua Z, Chen H, Shi J (2005) J Phys Chem B 109:14461–14464

    Article  CAS  Google Scholar 

  18. Cao M, Hu C, Wu Q, Guo C, Qi Yand Wang E (2005) Nanotechnology 16:282–286

    Article  CAS  Google Scholar 

  19. Fang YP, Xu AW, Song RQ, Zhang HX, You LP, Yu JC, Liu HQ (2003) J Am Chem Soc 125:16025–16034

    Article  CAS  Google Scholar 

  20. Yang M, You H, Zheng Y, Liu K, Jia G, Song Y, Huang Y, Zhang L, Zhang H (2009) Inorg Chem 48:11559–11565

    Article  CAS  Google Scholar 

  21. Bao J, Yu R, Zhang J, Yang X, Wang D, Deng J, Chen J, Xing X (2009) Cryst Eng Comm 11:1630–1634

    Article  CAS  Google Scholar 

  22. Schuetz P, Caruso F (2002) Chem Mater 14:4509–4513

    Article  CAS  Google Scholar 

  23. Xing Y, Li M, Davis SA, Mann S (2006) J Phys Chem B 110:1099–1101

    Article  Google Scholar 

  24. Wang XD, Song JH, Liu J, Wang ZL (2007) Science 316:102–105

    Article  CAS  Google Scholar 

  25. Chen SJ, Liu YC, Shao CL, Mu R, Lu YM, Zhang JY (2005) Adv Mater 17:586–590

    Article  CAS  Google Scholar 

  26. Zhang L, Chen D, Jiao X (2006) J Phys Chem B 110:2668–2673

    Article  CAS  Google Scholar 

  27. Hanna AA, Mousa SM, Elkomy GM, Sherief MA (2010) Eur J Chem 1:202–211

    Article  Google Scholar 

  28. Szczygiel I, Znamierowska T (1990) J Therm Anal Calorim 36:2195

    Article  CAS  Google Scholar 

  29. Wu YJ, Fu HP, Hong RY, Zheng Y, Wei DG (2009) J Alloys Compds 470:497–501

    Article  CAS  Google Scholar 

  30. Kumari L, Li WZ, Kulkarni S, Wu KH, Chen W, Wang C, Vannoy CH, Leblanc RM (2010) Nanoscale Res Lett 5:149–157

    Article  CAS  Google Scholar 

  31. Cavalcantea LS, Sczancoski JC, Li MS, Longo E, Varela JA (2012) Colloids Surf A: Physico-chem Eng Aspects 396:346–351

    Article  Google Scholar 

  32. Yan RX, Sun XM, Wang X, Peng Q, Li YD (2005) Chem Eur J 11:2183

    Article  CAS  Google Scholar 

  33. Zollfrank C, Scheel H, Brungs S, Greil PJ (2008) Cryst Growth Des 8:766

    Article  CAS  Google Scholar 

  34. Lucas S, Champion E, Bernache-Assollant D, Leroy G (2004) J solid state chem 177:1312–1320

    Article  CAS  Google Scholar 

  35. Mooney RCL (1948) J Chem Phys 16:1003

    Article  CAS  Google Scholar 

  36. Cheng Y, Wang YS, Jia C, Bao F (2006) J Phys Chem B 110:24399–24402

    Article  CAS  Google Scholar 

  37. Fujishiro Y, Ito H, Sato T, Okuwaki A (1997) J Alloys Compd 252:103–109

    Article  CAS  Google Scholar 

  38. Ocaña M, Rodríguez-Clemente R, Serna CJ (1995) Adv Mater 7:212–216

    Article  Google Scholar 

  39. Privman V, Matijevic E (1999) J Colloid Interface Sci 213:36–45

    Article  CAS  Google Scholar 

  40. Ammar S, Jouini N, Fievet F, Stephan O, Marhic C, Richard M, Villain F, Moulin CHCd, Brice S, Sainctavit PH (2004) J Non-Cryst Solids 346:658–662

    Article  Google Scholar 

  41. Ponpandian N, Narayana S (2002) J Appl Phys 92:2770–2778

    Article  CAS  Google Scholar 

  42. Zouari N, Khemakhem H, Mhiri T, Douad A (1999) J Phys Chem Solids 60:1779

    Article  CAS  Google Scholar 

  43. Nan CW, Schope T, Holten S, Kleim H, Birringer R (1999) J Appl Phys 85:7735–7740

    Article  CAS  Google Scholar 

  44. Palumbo G, Thorpe SJ, Aust KT (1990) Scr Metall Mater 24:1347–1350

    Article  CAS  Google Scholar 

  45. Bollman W (1989) Mater Sci Eng A 113:129

    Article  Google Scholar 

  46. Meilikhov EZ, Farzetdinova M (1998) Phys E 3:190

    Article  CAS  Google Scholar 

  47. Snejdar V, Jerhot J (1976) Thin Solid Films 37:303

    Article  CAS  Google Scholar 

  48. Setto YWJ (1975) J Appl Phys 46:5247

    Article  Google Scholar 

  49. Li GJ, Sun ZR, Zhao H, Chen CH, Ren RM (2007) Ceram Int 33:1503–1507

    Article  CAS  Google Scholar 

  50. Panteix PJ, Julien I, Abe´lard P, Bernache-Assollant D (2008) Ceram Int 34:1579–1586

    Article  CAS  Google Scholar 

  51. Arthur TH, Mark GS (1979) J Sol Stat Chem 28:345–361

    Article  Google Scholar 

  52. Schechter A, Savinell RF (2002) Solid State Ionics 147:181

    Article  CAS  Google Scholar 

  53. Amri M, Zouari N, Mhiri T, Pechev S, Gravereau P, Von Der Muhll R (2007) J Phys Chem Solids 68:1281

    Article  CAS  Google Scholar 

  54. Zouari N, Jaouadi K, Mhiri T (2006) Solid State Ionics 177:244

    Article  Google Scholar 

  55. Diorsa JE, Vargas RA, Albinson I, Mellander BE (2004) Phys Status Solid B 241:1369–1375

    Article  Google Scholar 

  56. Diorsa JE, Vargas RA, Albinson I, Mellander BE (2004) Solid State Commun 132:55

    Article  Google Scholar 

  57. Dutta A, Sinha TP (2011) Mater Res Bull 46:518

    Article  CAS  Google Scholar 

  58. Hill RM, Jonscher AK (1979) J Non-Cryst Solids 32:53–69

    Article  CAS  Google Scholar 

  59. Elkastawy MA (2010) J Alloys Compd 92:616

    Article  Google Scholar 

  60. Elliot SR (1987) Adv Phys 36:135

    Article  Google Scholar 

  61. Molak A, Paluch M, Pawlus S, Klimontko J, Ujma Z, Gruszka I (2005) J Phys D Appl Phys 38:1450–1460

    Article  CAS  Google Scholar 

  62. Nidhan Singh K, Kumar Bajpai P (2011) W J Cond Matter Phys 1:37–48

    Google Scholar 

  63. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics Press, London

    Google Scholar 

  64. Macdonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  65. Kumar A, Manna I (2008) Physica B 403:2298–2305

    Article  CAS  Google Scholar 

  66. Amm F, Kumar S, Batoo KM, Yousef A, Lee CG (2008) J Alloys Compd 464:361–369

    Article  Google Scholar 

  67. Afandiyeva IM, Do¨kme I, Altındal S, Bu¨lbu¨l MM, Tataroglu A (2008) Microelectron Eng 85:247–252

    Article  CAS  Google Scholar 

  68. Maxwell JC (1873) Electricity and magnetism, vol I. Oxford University Press, London, p 828

    Google Scholar 

  69. Wanger KW (1913) Ann Phys (Leipzig) 40:817–855

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassouna Dhaouadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhaouadi, H., Fadhalaoui, A., Mdani, A. et al. Structural and electrical properties of nanostructured cerium phosphate. Ionics 20, 857–866 (2014). https://doi.org/10.1007/s11581-013-1045-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-1045-4

Keywords

Navigation