Skip to main content
Log in

Structural, thermal, and electrical studies of sodium iodide (NaI)-doped hydroxypropyl methylcellulose (HPMC) polymer electrolyte films

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Solid polymer electrolyte films based on hydroxypropyl methylcellulose (HPMC) complexed with sodium iodide (NaI) were prepared using solution cast method. The dissolution of the salt into the polymer host and the structural properties of pure and complexed HPMC polymer electrolyte films were confirmed by X-ray diffraction (XRD) studies. XRD results revealed that the amorphous domains of HPMC polymer matrix were increased with increase in NaI salt concentration. The degree of crystallinity was found to be high in pure HPMC samples. The thermal properties were studied using differential scanning calorimetry (DSC). DSC results revealed that the presence of NaI in the polymer matrix increases the melting temperature; however, it is observed that fusion heat is high for pure HPMC films. The variation of film morphology was examined by scanning electron microscopy. Fourier transform infrared spectral studies revealed vibrational changes that occurred due to the effect of dopant salt in the polymer. Direct current conductivity was measured in the temperature range of 313–383 K. The magnitude of electrical conductivity was found to increase with the increase in salt and temperature concentration. The data on the activation energy regions (regions I and II) indicated the dominance of ion-type charge transport in these polymer electrolyte films. The composition HPMC:NaI (5:4) is found to exhibit the least crystallinity and the highest conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Armand MB (1993) Solid State Ion 9/10:745

    Article  Google Scholar 

  2. Papke BL, Ratner, Shriver DF (1992) J Electrochem Soc 129:1694

    Article  Google Scholar 

  3. Berthier C, Gorecki W, Miner M, Amand MB, Chabagno JM, Riguad P (1983) J Solid State Ion 11:91

    Article  CAS  Google Scholar 

  4. Armand MB (1986) Annu Rev Mater Sci 16:245–261

    Article  CAS  Google Scholar 

  5. Jaipal Reddy M, Chu PP (2002) Electrochim Acta 47:1189–1196

    Article  CAS  Google Scholar 

  6. Reitman EA, Kaplan ML, Kava RJ (1985) J Solid State Ionics 17:67

    Article  Google Scholar 

  7. Mclin M, Angell CA (1992) J Solid State Ionics 56:1027

    Article  Google Scholar 

  8. Lee YL, Crist BJ (1986) J Appl Phys 60:2683

    Article  CAS  Google Scholar 

  9. Lascaud S, Perrier M, Vallee A, Besner S, Prud home J, Armand M (1994) Macromolecules 27:7469

    Article  CAS  Google Scholar 

  10. Balaki Bhargav P, Madhu Mohan V, Sharma AK, Rao VVRN (2007) J Ionics 13:173–178

    Article  Google Scholar 

  11. Mohammad Saleem Khan, Abdul Shakur (2010) J Ionics 16:539–542

    Article  Google Scholar 

  12. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  13. Subba Reddy CV, Jin AP, Zhu QY, Mai LQ, Chen W (2006) Eur Phys 19:471

    Google Scholar 

  14. Anantha PS, Hariharn K (2003) J Phys Chem Solids 64:1131

    Article  CAS  Google Scholar 

  15. Sreekanth Reddy T, Jaipal Reddy M, Ramalingaiah S, Subbarao UV (1999) J Power Sources 79:105

    Article  Google Scholar 

  16. Greenbaum SG, Pak YS, Wintersgill MC, Fontanella JJ, Schultz JW (1988) J Electrochem Soc 135:235

    Article  CAS  Google Scholar 

  17. Sreepathi Rao S, Jaipal Reddy M, Laxmi Narsaiah E, Subba Rao UV (1995) Mater Sci Eng B 33:173

    Google Scholar 

  18. Tripathi SK (2012) Bull Mater Sci Indian Acad Sci 35(6):969–975

    Article  CAS  Google Scholar 

  19. S. Honary, P. Ebrahimi, N. Emrani (2010) Int J Pharma Bio Sci l(2)

  20. Hardy IJ, Cook WG, Melia CDS (2006) Compression and compaction properties of plasticized high molecular weight hydroxypropyl methylcellulose (HPMC) as a hydrophilic matrix carrier. Inter J Pharm 311(1–2):26–32

    Article  CAS  Google Scholar 

  21. Hunter CC, Ingram MD (1984) Solid State Ionics 14:31

    Google Scholar 

  22. Bruce PG, Vincent CA (1993) J Chem Soc Faraday Trans 89:3187–3203

    Article  CAS  Google Scholar 

  23. Madhu Mohan V, Raja V, Sharma AK, Narasimha Rao VVRN (2004) J Mater Chem Phys 94:177

    Article  Google Scholar 

  24. Hermans PH, Weidinger A (1961) Makromol Chem 24:44

    Google Scholar 

  25. Sangappa, Demappa et al (2008) Nucl Instr Meth Phys Res B 266:3975–3980

    Article  CAS  Google Scholar 

  26. Zhang S, Lee JY, Hong L (2004) J Power Sources 115:288

    Google Scholar 

  27. Chu PP, Reddy MJ (2003) J Power Sources 115:288

    Article  CAS  Google Scholar 

  28. Subba Reddy CHV, Sharma AK, Narasimha Rao VVR (2006) J Polymer 47:1318

    Article  CAS  Google Scholar 

  29. Bhide A, Hariharan K (2006) J Power Sources 159(2):1450

    Article  CAS  Google Scholar 

  30. HiranKumar G, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2005) J Power Sources 144:262

    Article  CAS  Google Scholar 

  31. Balaji Bhargav P, Mahy Mohan V, Sharma AK, Rao VVRN (2007) J Ionics 13:173–178

    Article  Google Scholar 

  32. Chakraborty G et al (2011) J Solid State Commun 151:754–758

    Article  CAS  Google Scholar 

  33. Janaki Rami Reddy T, Achari VBS, Sharma AK, Rao VVRN (2007) Ionics 13:435–439

    Article  Google Scholar 

  34. Devendrappa H, Subba Rao UV, Ambika Prasad MVN (2006) J Power Sources 155(2):368

    Article  CAS  Google Scholar 

  35. Michael MS, Jacob MME, Prabhaharan SRS, Radhakrishnan S (1997) Solid State Ion 98:167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge all the support and the useful discussion by Professor Srikantaiah, Retired Scientist, BARC, Mumbai. We are thankful to the technical staff at SID and Material Science Department, IISc, Bangalore for DSC, FTIR, and SEM analysis. We thank Grian Technologies Pvt. Limited, Bangalore for their support in electrical conductivity studies. Special thanks to Dr Shibu M Eappen, Scientist in Charge, SAIF Cochin University of Science and Technology, Cochin, for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sannappa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rani, N.S., Sannappa, J., Demappa, T. et al. Structural, thermal, and electrical studies of sodium iodide (NaI)-doped hydroxypropyl methylcellulose (HPMC) polymer electrolyte films. Ionics 20, 201–207 (2014). https://doi.org/10.1007/s11581-013-0952-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0952-8

Keywords

Navigation