Skip to main content

Advertisement

Log in

Effect of different compositions of ethylene carbonate and propylene carbonate containing iodide/triiodide redox electrolyte on the photovoltaic performance of DSSC

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The effect of different compositions (in weight percent) of ethylene carbonate (EC) and propylene carbonate (PC) containing iodide/triiodide redox electrolyte on the photoelectrochemical performance of N719-sensitized nanocrystalline TiO2 solar cell was studied. The cells consisted of 0.6 M 1-hexyl-2,3-dimethylimidazolium iodide, 0.1 M LiI, 0.05 M I2 and 0.5 M 4-tert-butylpyridine in different compositions such as 1:1, 1:2, and 2:1 wt% of EC and PC. In 1:1 wt% of EC and PC containing redox electrolyte, short circuit photocurrent density (J sc) increased and open circuit voltage (V oc) decreased. But in 1:2 and 2:1 wt% of EC and PC containing redox electrolytes, V oc increased and J sc decreased but fill factor remained relatively constant. Dye-sensitized solar cells (DSSCs) prepared using these electrolytes give a short circuit photocurrent densities of 16.86, 12.71, and 12.09 mA/cm2; an open circuit voltages of 0.73, 0.78, and 0.79 V; fill factors of 0.63, 0.64, and 0.64; and an overall conversion efficiencies of 7.76, 6.34, and 6.13 % at an incident light of 100 mWcm−2 for 1:1, 2:1, and 1:2 wt% of EC/PC containing redox electrolytes, respectively. The incident photon-to-current conversion efficiency was higher in the case of 1:1 wt% of EC and PC containing redox electrolyte than 1:2 and 2:1 wt% of EC and PC containing redox electrolyte. It revealed that 1:1 wt% of EC and PC containing iodide/triiodide redox electrolyte is an effective electrolyte system for the fabrication of long-term stable DSSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McConnell RD (2002) Assessment of the dye-sensitized solar cell. Renew Sust Energ Rev 6:273

    Article  CAS  Google Scholar 

  2. Gratzel M (2001) Photoelectrochemical cells. Nature 414:338

    Article  CAS  Google Scholar 

  3. Qin Q, Tao J, Yang Y (2010) Preparation and characterization of polyaniline film on stainless steel by electrochemical polymerization as a counter electrode of DSSC. Synth Met 160:1167

    Article  CAS  Google Scholar 

  4. Ki Seob H, Seok Joo D, KiRyong H (2011) Photovoltaic efficiency characteristics of DSSC with electroplated Pt/Ni counter electrode. Appl Chem Engg 22:98

    Google Scholar 

  5. Yu B, Noh Y, Han J, Song O (2011) MWCNT employed counter electrode for DSSCs. IEEE nanotechnology materials and device conference at University of Seoul, Dongdaemun-gu, South Korea 18–21 Oct. 2011

  6. Daeneke T, Uemura Y, Duffy NW, Mozer AJ, Koumura N, Bach U, Spiccia L (2012) Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide–ferrocyanide redox couple. Adv Mater 24:1222

    Article  CAS  Google Scholar 

  7. Gibson EA, Le Pleux L, Fortage J, Pellegrin Y, Blart E, Odobel F, Hagfeldt A, Boschloo G (2012) Role of the triiodide/iodide redox couple in dye regeneration in p-type dye-sensitized solar cells. Langmuir 28:6485

    Article  CAS  Google Scholar 

  8. Yingtong T, Xu P, Changneng Z, Songyuan D, Fantai K, Linhua H, Yifeng S (2010) Influence of different electrolytes on the reaction mechanism of a triiodide/iodide redox couple on the platinized FTO glass electrode in dye-sensitized solar cells. J Phys Chem B 114:4160

    Google Scholar 

  9. Mingkui W, Nathalie C, Livain B, Jacques-E M, Robin H-B, Benoît M, Zakeeruddin SM, Michael G (2010) An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cell. Nat Chem 23:85

    Google Scholar 

  10. Gubbala S, Chakrapani V, Kumar V, Sunkara MK (2008) Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires. Adv Func Mater 18:2411

    Article  CAS  Google Scholar 

  11. Fukui A, Komiya R, Yamanaka R, Islam A, Han L (2006) Effect of a redox electrolyte in mixed solvents on the photovoltaic performance of a dye-sensitized solar cell. Sol Energy Mater Sol Cells 90:649

    Article  CAS  Google Scholar 

  12. Vendra V, Nyugen T, Amos DA, Druffel T, Sunkara MK (2012) Alternate redox couples in dye sensitized solar cells using tin oxide nanowires and their hybrid architectures. The Electrochemical Society Meeting Abstract, Honolulu, Hawaii 7 – 12 Oct 2012

  13. Gerrit B, Anders H (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42:1819

    Article  Google Scholar 

  14. Bo-So C, Kellen C, Yi-Huan H, Wei-Hsin L, Tsung-Hui L, Chin-Hung L, Pi-Tai C, Yun C, Lee G-H (2009) Neutral, panchromatic Ru(II) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance. Chem Commun 5844:106

    Google Scholar 

  15. Viswanathan SS, Myoungho P (2010) Effect of coadsorbents on DSSC sensitized by NIR absorbing poly(ethyl thieno[3,4-b]thiophene-2-carboxylate). Curr Appl Phys 10:S410

    Article  Google Scholar 

  16. Zhen F, Aaron AE, Kirk SS (2011) Low-bandgap donor−acceptor conjugated polymer sensitizers for dye-sensitized solar cells. J Am Chem Soc 133:3063

    Article  Google Scholar 

  17. Huizhi Z, Liqiong W, Yurong G, Tingli M (2011) Dye-sensitized solar cells using 20 natural dyes as sensitizers. J Photochem Photobiol A Chem 219:188

    Article  Google Scholar 

  18. Mi Yeon S, Do Kyun K, Kyo Jin I, Seong Mu J, Dong Young K (2004) Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology 15:1861

    Article  Google Scholar 

  19. Sathiyapriya AR, Subramania A, Young-Sam J, Kim K-J (2008) High-performance quasi-solid-state dye-sensitized solar cell based on an electrospun PVdF-HFP membrane electrolyte. Langmuir 24:9816

    Article  Google Scholar 

  20. Hongxia W, Peter LM (2012) Influence of electrolyte cations on electron transport and electron transfer in dye-sensitized solar cells. J Phys Chem C 116:10468

    Article  Google Scholar 

  21. Wu J, Lana Z, Wang D, Hao S, Lin J, Wei Y, Yin S, Sato T (2006) Quasi-solid state dye-sensitized solar cells-based gel polymer electrolytes with poly(acrylamide)–poly(ethylene glycol) composite. J Photochem Photobiol A Chem 181:333

    Article  CAS  Google Scholar 

  22. Rajendran S, Sivakumar P (2008) An investigations of PVdF/PVC-based blend electrolytes with EC/PC as plasticizers in Lithium battery applications. Physica B 403:509

    Article  CAS  Google Scholar 

  23. Wu J, Lan W, Hao S, Li P, Lin J, Huang M, Fang L, Huang Y (2008) Progress on the electrolytes for dye-sensitized solar cells. Pure Appl Chem 80:2241

    Article  CAS  Google Scholar 

  24. Liu Y, Hagfeldt A, Xiao X-R, Lindquist S-E (1998) Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell. Sol Mater Sol Cell 55:267

    Article  CAS  Google Scholar 

  25. Wiberg J, Marinado T, Hagberg DP, Sun L, Albinsson B (2010) Distance and driving force dependencies of electron injection and recombination dynamics in organic dye-sensitized solar cells. J Phys Chem B 114:14358

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (Dr. AS) gratefully acknowledge the CSIR, New Delhi for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Subramania.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramania, A., Vijayakumar, E., Sivasankar, N. et al. Effect of different compositions of ethylene carbonate and propylene carbonate containing iodide/triiodide redox electrolyte on the photovoltaic performance of DSSC. Ionics 19, 1649–1653 (2013). https://doi.org/10.1007/s11581-013-0892-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0892-3

Keywords

Navigation