Skip to main content
Log in

29Si MAS-NMR study of oxide conductors derived from the apatite-type La9.33Si6O26 compound

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The preparation of (La9.33−2x/3Sr x 0.67−x/3)Si6O24O2 (0 ≤ x ≤ 2) samples with different amounts of cation vacancies is reported. Structure and unit-cell parameters were deduced by Rietveld analysis of XRD patterns. Structural features that enhance oxygen conductivity in Sr-doped apatites are discussed. Up to three components were detected in 29Si MAS-NMR spectra which change with the amount and distribution of cation vacancies. In general, oxygen conductivity increases with the amount of vacancies at La1 (6h) sites, passing through a maximum for x = 0.4. In the case of activation energy, a minimum is detected near x = 1.2, indicating that entropic and enthalpic change in different ways. The presence of cation vacancies should enhance oxygen hopping along c-axis; however, the analysis of the frequency dependence of conductivity suggests that oxygen motions are produced along three axes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sansom JEH, Richings D, Slater PR (2001) Solid State Ionics 139:205–210

    Article  CAS  Google Scholar 

  2. Tolchard JR, Slater PR (2008) J Phys Chem Solids 69:2433–2439

    Article  CAS  Google Scholar 

  3. Tolchard JR, Slater PR, Islam MS (2007) Adv Funct Mater 17:2564–2571

    Article  CAS  Google Scholar 

  4. Nakayama S, Aono H, Sadaoka Y (1995) Chem Letters 24:431–432

    Article  Google Scholar 

  5. Nakayama S, Sakamoto M (1998) J Eur Ceram Soc 18:1413–1418

    Article  CAS  Google Scholar 

  6. Nakayama S, Sakamoto M, Higuchi M, Kodaira K, Sato M, Kakita S, Suzuki T, Itoh K (1999) J Eur Ceram Soc 19:507–510

    Article  CAS  Google Scholar 

  7. Sansom JEH, Tolchard JR, Islam MS, Apperley D, Slater PR (2006) J Mater Chem 16:1410–1413

    Article  CAS  Google Scholar 

  8. Islam MS, Tolchard JR, Slater PR (2003) Chem Commun 13:1486–1487

    Google Scholar 

  9. Leon-Reina L, Losilla ER, Martinez-Lara M, Bruque S, Aranda MAG (2004) J Mater Chem 14:1142–1149

    Article  CAS  Google Scholar 

  10. Massiot D, Bessada C, Coutures JP, Taulelle F (1990) J Magn Reson 90:231–242

    CAS  Google Scholar 

  11. Jonscher A (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London

    Google Scholar 

  12. Almond DP, West AR (1987) Solid State Ionics 23:27–35

    Article  CAS  Google Scholar 

  13. Panteix PJ, Julien I, Bernache-Assollant D, Abelard P (2006) Mater Chem Phys 95:313–320

    Article  CAS  Google Scholar 

  14. Panteix PJ, Julien I, Abelard P, Bernache-Assollant D (2008) J Eur Cerum Soc 28:821–828

    Article  CAS  Google Scholar 

  15. Escudero A, Becerro AI (2007) J Phys Chem Solids 68:1348–1353

    Article  CAS  Google Scholar 

  16. Hwan Jo S, Muralidharanl P, Kim DK (2009) Electrochim Acta 54:7495–7501

    Article  Google Scholar 

  17. Jones A, Slater PR, Islam MS (2008) Chem Mater 20:5055–5060

    Article  CAS  Google Scholar 

  18. Kendrick E, Kendrick J, Knight KS, Islam MS, Slater PR (2007) Nat Matters 6:871–875

    Article  CAS  Google Scholar 

  19. Kendrick E, Knight KS, Islam MS, Slater PR (2007) J Mater Chem 17:3104–3111

    Article  CAS  Google Scholar 

  20. Kendrick E, Islam MS, Slater PR (2008) Chem Commun 6:715–717

    Google Scholar 

  21. Gonzalez LGM, Rodriguez-Reyna E, Moreno KJ, Escalante-Garcia JI, Fuentes AF (2009) J Alloy Comp 476:710–714

    Article  Google Scholar 

  22. Kharton VV, Shaula AL, Patrakeev MV, Waerenborgh JC, Rojas DP, Vyshatko NP, Tsipis EV, Yaremchenko AA, Marques EMB (2004) J Electrochem Soc 151:A1236–A1246

    Article  CAS  Google Scholar 

  23. Sidebottom DL (1999) Phys Rev Lett 83:983–986

    Article  CAS  Google Scholar 

  24. Robertson AD, West AR, Ritchie AG (1997) Solid State Ionics 104:1–11

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Tunisian Ministry of Higher Education and Scientific Research (MESRS) for the financial support. Special thanks are addressed to Spanish Agency of International Cooperation (AECI) for the travel expenses support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Madani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madani, A., Sobrados, I., Inoubli, A. et al. 29Si MAS-NMR study of oxide conductors derived from the apatite-type La9.33Si6O26 compound. Ionics 16, 723–731 (2010). https://doi.org/10.1007/s11581-010-0457-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-010-0457-7

Keywords

Navigation