Skip to main content
Log in

Physicochemical properties of LiAl x Mn2 − x O4 and LiAl0.05Mn1.95O4 − y F y cathode material by the citric acid-assisted sol–gel method

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiAl x Mn2 − x O4 and LiAl0.05Mn1.95O4 − y F y spinel have been successfully synthesized by citric acid-assisted sol–gel method. The structure and physicochemical properties of this as-prepared powder were investigated by electronic conductivity test, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge test in detail. The electronic conductivity decreases with increasing of the content of doped Al. XRD patterns show that the diffraction of LiAl0.05Mn1.95O4 − y F y samples is similar, with all the peaks indexable in the Fd3m space group, and a little impurity appears in the LiAl0.05Mn1.95O3.8F0.2 sample. SEM reveals that all LiAl0.05Mn1.95O4 − y F y powders have the uniform, nearly cubic structure morphology with narrow size distribution which is less than 500 nm. Galvanostatic charge–discharge test indicates that LiAl0.05Mn1.95O4 has the highest discharge capacity and electrochemical performance among all LiAl x Mn2 − x O4 samples after 50 cycles, and the initial discharge capacity of LiAl0.05Mn1.95O4 − y F y (y = 0, 0.02, 0.05, 0.1) is 123.9, 124.6, 124.9, and 125.0 mAh g−1, respectively, and their capacity retention ratios are 94.2%, 94.9%, 91.7%, and 89.9% after 50 cycles, respectively. EIS indicates that LiAl0.05Mn1.95O3.98F0.02 have smaller charge transfer resistance than that of LiAl0.05Mn1.95O4 corresponding to the extraction of Li+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shin HC, Cho WI, Jang H (2006) Electrochim Acta 52:1472

    Article  CAS  Google Scholar 

  2. Chung SY, Bloking JT, Chiang YM (2002) Nat Mater 1:123

    Article  CAS  Google Scholar 

  3. Thackeray MM, Johnson PJ, Picciotto de LA, Bruce PG, Goodenough JB (1984) Mater Res Bull 19:179

    Article  CAS  Google Scholar 

  4. Yi TF, Hu XG, Gao K (2006) J Power Sources 162:636

    Article  CAS  Google Scholar 

  5. Wang H-C, Lu CH (2003) J Power Sources 119–121:738

    Article  Google Scholar 

  6. Liu RS, Shen CH (2003) Solid State Ionics 157:95

    Article  CAS  Google Scholar 

  7. Yi T-F, Zhu Y-R (2008) Electrochim Acta 53:3120

    Article  CAS  Google Scholar 

  8. Kakuda T, Uematsu K, Toda K, Sato M (2007) J Power Sources 167:499

    Article  CAS  Google Scholar 

  9. Lee YS, Kumada N, Yoshio M (2001) J Power Sources 96:376

    Article  CAS  Google Scholar 

  10. Bao S-J, Liang Y-Y, Zhou W-J, He B-L, Li H-L (2005) J Colloid Interf Sci 291:433

    Article  CAS  Google Scholar 

  11. Yi TF, Dai CS, Gao K, Hu XG (2006) J Alloys Compds 425:343

    Article  CAS  Google Scholar 

  12. Shao-Horn Y, Middaugh RL (2001) Solid State Ionics 139:13

    Article  CAS  Google Scholar 

  13. Yi TF, Hu XG, Huo HB, Gao K (2006) Rare Metal Mat Eng 35:1350

    CAS  Google Scholar 

  14. Doron A, Yair E-E, Chusid O, Carmeli Y, Babai M, Yamin H (1994) J Electrochem Soc 141:603

    Article  Google Scholar 

  15. Chusid O, Eli YE, Aurbach D, Babai M, Carmeli, Y (1993) J Power Sources 43:47

    Article  CAS  Google Scholar 

  16. Hunter JC (1981) J Solid State Chem 39:142

    Article  CAS  Google Scholar 

  17. Tarascon JM, Mckinnon WR, Coowar F, Bowmer TN, Amatucci G, Guyomard D (1994) J Electrochem Soc 141:1421

    Article  CAS  Google Scholar 

  18. Yi TF, Hu XG, Dai CS, Gao K (2007) J Mater Sci 423:825

    Google Scholar 

  19. Kim G-H, Kim J-H, Yoon CS, Myung S-T, Sun Y-K (2005) J Electrochem Soc 152:1707

    Article  Google Scholar 

  20. Levi MD, Aurbach D (1997) J Phys Chem B 101:4630

    Article  CAS  Google Scholar 

  21. Levi MD, Levi EA, Aurbach D (1997) J Electroanal Chem 421:89

    Article  CAS  Google Scholar 

  22. Zhang SS, Xu K, Jow TR (2004) Electrochim Acta 49:1057

    Article  CAS  Google Scholar 

  23. Shu D, Chung KY, Cho WI, Kim K-B (2003) J Power Sources 114:253

    Article  CAS  Google Scholar 

  24. Wu X, Zong X, Yang Q, Jin Z, Wu H (2001) J Fluorine Chem 107:39

    Article  Google Scholar 

  25. Balasubramanian M, Lee HS, Sun X, Yang XQ, Moodenbaugh AR, Mcbreen J, Fischer DA, Fu Z (2002) Electrochem Solid-State Lett 5:A22

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed by the financial support of Student Research & Training Program (SRTP, no. 08019) of Anhui University of Technology. The authors thank Prof. Xinguo Hu of Harbin Institute of Technology and Dr. Ying Wang of Institute of Chemistry Chinese Academy of Sciences for their helpful discussion on the experimental techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Feng Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, TF., Zhu, YR., Zhu, RS. et al. Physicochemical properties of LiAl x Mn2 − x O4 and LiAl0.05Mn1.95O4 − y F y cathode material by the citric acid-assisted sol–gel method. Ionics 15, 177–182 (2009). https://doi.org/10.1007/s11581-008-0248-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-008-0248-6

Keywords

Navigation