Skip to main content
Log in

Effects of lithium excess amount on the microstructure and electrochemical properties of LiNi0.5Mn1.5O4 cathode material

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Spinel LiNi0.5Mn1.5O4 cathode materials with different lithium excess amount (0, 2%, 6%, 10%) were synthesized by a facile solid-state method. The effect of lithium excess amount on the microstructure, morphology, and electrochemical properties of LiNi0.5Mn1.5O4 materials was systematically investigated. The results show that the lithium excess amount does not change the particle morphology and size obviously; thus, the electrochemical properties of LiNi0.5Mn1.5O4 are mainly determined by structural characteristics. With the increase of lithium excess amount, the cation disordering degree (Mn3+ content) and phase purity first increase and then decrease, while the cation mixing extent has the opposite trend. Among them, the LiNi0.5Mn1.5O4 material with 6% lithium excess amount exhibits higher disordering degree and lower impurity content and cation mixing extent, thus leading to the optimum electrochemical properties, with discharge capacities of 125.0, 126.1, 124.2, and 118.9 mAh/g at 0.2-, 1-, 5-, and 10-C rates and capacity retention rate of 96.49% after 100 cycles at 1-C rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zuo X, Zhu J, Müller-Buschbaum P, Cheng Y-J (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143. https://doi.org/10.1016/j.nanoen.2016.11.013

    Article  CAS  Google Scholar 

  2. Su D, Zhao Y, Yan D, Ding C, Ning M, Zhang J, Li J, Jin H (2017) Enhanced composite of V2O5 nanowires decorating on graphene layers as ideal cathode materials for lithium-ion batteries. J Alloys Compd 695:2974–2980. https://doi.org/10.1016/j.jallcom.2016.11.363

    Article  CAS  Google Scholar 

  3. Chen GH, Yang J, Tang JJ, Zhou XY (2015) Hierarchical NiCo2O4 nanowire arrays on Ni foam as an anode for lithium-ion batteries. RSC Adv 5(29):23067–23072. https://doi.org/10.1039/C5RA00768B

    Article  CAS  Google Scholar 

  4. Yang XL, Xing JL, Liu X, Wang T, Peng W, Xie J (2014) Performance improvement and failure mechanism of LiNi0.5Mn1.5O4/graphite cells with biphenyl additive. Phys Chem Chem Phys 16:24373–24381. https://doi.org/10.1039/C4CP03173C

  5. Xu Y, Wan L, Liu J, Zeng L, Yang Z (2017) γ-butyrolactone and glutaronitrile as 5 V electrolyte additive and its electrochemical performance for LiNi0.5Mn1.5O4. J Alloys Compd 698:207–214. https://doi.org/10.1016/j.jallcom.2016.11.381

    Article  CAS  Google Scholar 

  6. Haridasa AK, Sharma CS, Rao TN (2016) Caterpillar-like sub-micron LiNi0.5Mn1.5O4 structures with site disorder and excess Mn3+ as high performance cathode material for lithium ion batteries. Electrochim Acta 212:500–509. https://doi.org/10.1016/j.electacta.2016.07.039

    Article  CAS  Google Scholar 

  7. Yi T-F, Mei J, Zhu Y-R (2016) Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. J Power Sources 316:85–105. https://doi.org/10.1016/j.jpowsour.2016.03.070

    Article  CAS  Google Scholar 

  8. Gu Y-J, Li Y, Chen Y-B, Liu H-Q (2016) Comparison of Li/Ni antisite defects in Fd3m and P4332 nanostructured LiNi0.5Mn1.5O4 electrode for Li-ion batteries. Electrochim Acta 213:368–374. https://doi.org/10.1016/j.electacta.2016.06.124

  9. Kim JH, Pieczonka NPW, Li Z, Wu Y, Harris S, Powell BR (2013) Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries. Electrochim Acta 90:556–562. https://doi.org/10.1016/j.electacta.2012.12.069

    Article  CAS  Google Scholar 

  10. Liu J, Manthiram A (2009) Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn1.5Ni0.5O4. J Phys Chem C 113(33):15073–15079. https://doi.org/10.1021/jp904276t

    Article  CAS  Google Scholar 

  11. Chemelewski KR, Manthiram A (2013) Origin of site disorder and oxygen nonstoichiometry in LiMn1.5Ni0.5-xMxO4 (M=Cu and Zn) cathodes with divalent dopant ions. J Phys Chem C 117(24):12465–12471. https://doi.org/10.1021/jp404496j

    Article  CAS  Google Scholar 

  12. Qian Y, Deng Y, Wan L, Xu H, Qin X, Chen G (2014) Investigation of the effect of extra lithium addition and post-annealing on the electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material. J Phys Chem C 118(29):15581–15589. https://doi.org/10.1021/jp503584k

    Article  CAS  Google Scholar 

  13. Deng Y-F, Zhao S-X, Zhai P-Y, Cao G, Nan C-W (2015) Impact of lithium excess on the structural and electrochemical properties of LiNi0.5Mn1.5O4 high-voltage cathode material. J Mater Chem A 3(40):20103–20107. https://doi.org/10.1039/C5TA06339F

    Article  CAS  Google Scholar 

  14. Xue Y, Wang Z, Zheng L, Yu F, Liu B, Zhang Y, Ke K (2015) Investigation on preparation and performance of spinel LiNi0.5Mn1.5O4 with different microstructures for lithium-ion batteries. Sci Rep 5(1):13299. https://doi.org/10.1038/srep13299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feng J, Huang Z, Guo C, Chernova NA, Upreti S, Whittingham MS (2013) An organic coprecipitation route to synthesize high voltage LiNi0.5Mn1.5O4. ACS Appl Mater Interfaces 5(20):10227–10232. https://doi.org/10.1021/am4029526

    Article  CAS  PubMed  Google Scholar 

  16. Thackeray MM (1997) Manganese oxides for lithium batteries. Prog Solid State Chem 25(1-2):1–71. https://doi.org/10.1016/S0079-6786(97)81003-5

    Article  CAS  Google Scholar 

  17. Bao SJ, Li CM, Li HL, Luong JHT (2007) Morphology and electrochemistry of LiMn2O4 optimized by using different Mn-sources. J Power Sources 164(2):885–889. https://doi.org/10.1016/j.jpowsour.2006.11.015

    Article  CAS  Google Scholar 

  18. Wei YJ, Nam KW, Kim KB, Chen G (2006) Spectroscopic studies of the structural properties of Ni substituted spinel LiMn2O4. Solid State Ionics 177(1-2):29–35. https://doi.org/10.1016/j.ssi.2005.10.015

    Article  CAS  Google Scholar 

  19. Lee YS, Kumada N, Yoshio M (2001) Synthesis and characterization of lithium aluminum-doped spinel (LiAlxMn2-xO4) for lithium secondary battery. J Power Sources 96(2):376–384. https://doi.org/10.1016/S0378-7753(00)00652-2

    Article  CAS  Google Scholar 

  20. Yi T-F, Han X, Chen B, Zhu Y-R, Xie Y (2017) Porous sphere-like LiNi0.5Mn1.5O4-CeO2 composite with high cycling stability as cathode material for lithium-ion battery. J Alloys Compd 703:103–113. https://doi.org/10.1016/j.jallcom.2017.01.342

    Article  CAS  Google Scholar 

  21. Ariyoshi K, Iwakoshi Y, Nakayama N, Ohzuku T (2004) Topotactic two-phase reactions of Li[Ni1/2Mn3/2]O4 (P4332) in nonaqueous lithium cells. J Electrochem Soc 151(2):A296–A303. https://doi.org/10.1149/1.1639162

    Article  CAS  Google Scholar 

  22. Kunduraci M, Amatucci GG (2008) The effect of particle size and morphology on the rate capability of 4.7 V LiMn1.5+δNi0.5-δO4 spinel lithium-ion battery cathodes. Electrochim Acta 53(12):4193–4199. https://doi.org/10.1016/j.electacta.2007.12.057

    Article  CAS  Google Scholar 

  23. Lee E-S, Manthiram A (2013) Influence of doping on the cation ordering and charge-discharge behavior of LiMn1.5Ni0.5-xMnxO4 (M = Cr, Fe, Co, and Ga) spinels between 5.0 and 2.0 V. J Mater Chem A 1(9):3118–3126. https://doi.org/10.1039/c2ta01171a

    Article  CAS  Google Scholar 

  24. Lee E-S, Nam K-W, Hu E, Manthiram A (2012) Influence of cation ordering and lattice distortion on the charge-discharge behavior of LiMn1.5Ni0.5O4 spinel between 5.0 and 2.0 V. Chem Mater 24(18):3610–3620. https://doi.org/10.1021/cm3020836

    Article  CAS  Google Scholar 

  25. Zeng Y-P, Wu X, Mei P, Cong L-N, Yao C, Wang R-S, Xie H-M, Sun L-Q (2014) Effect of cationic and anionic substitution on the electrochemical properties of LiNi0.5Mn1.5O4 spinel cathode materials. Electrochim Acta 138:493–500. https://doi.org/10.1016/j.electacta.2014.06.082

    Article  CAS  Google Scholar 

  26. Hai B, Shukla AK, Duncan H, Chen G (2013) The effect of particle surface facets on the kinetic properties of LiMn1.5Ni0.5O4 cathode materials. J Mater Chem A 1(3):759–769. https://doi.org/10.1039/C2TA00212D

    Article  CAS  Google Scholar 

  27. Luo D, Li G, Yu C, Yang L, Zheng J, Guan X, Li L (2012) Low-concentration donor-doped LiCoO2 as a high performance cathode material for Li-ion batteries to operate between −10.4 and 45.4 °C. J Mater Chem 22(41):22233–22241. https://doi.org/10.1039/c2jm35550g

    Article  CAS  Google Scholar 

  28. Xiang JY, JP T, Qiao YQ, Wang XL, Zhong J, Zhang D, CD G (2011) Electrochemical impedance analysis of a hierarchical CuO electrode composed of self-assembled nanoplates. J Phys Chem C 115(5):2505–2513. https://doi.org/10.1021/jp108261t

    Article  CAS  Google Scholar 

  29. Li B, Han C, He Y-B, Yang C, Du H, Yang Q-H, Kang F (2012) Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy Environ Sci 5(11):9595–9602. https://doi.org/10.1039/c2ee22591c

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Natural Science Foundation of Hebei Province (Grant number E2015202356), Key R&D Plan Self-raised Project of Hebei Province (Grant number 16214406), and Technology Innovation Foundation Project for Outstanding Youth of Hebei University of Technology (Grant number 2013009) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Electronic supplementary material

ESM 1

(DOC 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Qin, X., Zong, B. et al. Effects of lithium excess amount on the microstructure and electrochemical properties of LiNi0.5Mn1.5O4 cathode material. Ionics 24, 2241–2250 (2018). https://doi.org/10.1007/s11581-017-2374-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2374-5

Keywords

Navigation