Skip to main content
Log in

Mathematical model of electrochemical gas sensors with distributed temporal and spatial parameters and its transformation to models of the real YSZ-based sensors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The activity in the field of computer-aided optimum design in engineering of electrochemical gas sensors has been increasing steadily over the last decade. A vast range of models exist today, varying in complexity and in the number of assumptions employed. However, the emphasis in a majority of the models has been either on the transport processes or on the electrochemical processes. This manuscript presents a complete mathematical model of electrochemical gas sensors, represented as a system of the partial differential equations of parabolic and hyperbolic types and the algorithm of transfer from the complete model to models of specific sensors. A complete mathematical model shows that the physic–electro–chemical processes occurring in the electrochemical gas sensors can be described more accurately. Presented mathematical model together with the proposed algorithm provides a decision-making tool for better optimal design of the solid electrolyte gas sensors. An example of transfer from a complete model to real model of the yttria-stabilized zirconia (YSZ)-based potentiometric gas sensors has been shown for the YSZ-based oxygen sensor with Pt sensing electrode (SE) and metal–metal oxide (Me–MeO) reference electrode (RE). Verification of the adequacy of the mathematical model to real gas sensor has been evaluated by the Fisher criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhuiykov S, Nakano T, Kunimoto A, Miura N (2001) Electrochem Commun 3:97

    Article  CAS  Google Scholar 

  2. Zhuiykov S, Miura N (2005) In: Sorrel SS, Nowotny J, Sugihara J (eds) Materials for energy conversion devices. Woodhead, Cambridge, England, pp 303–335, (Chapter 12)

    Google Scholar 

  3. Miura N, Nakatou M, Zhuiykov S (2003) Sens Actuators, B, Chem 93:221

    Article  CAS  Google Scholar 

  4. Miura N, Zhuiykov S, Ono T, Hasei M, Yamazoe N (2002) Sens Actuators, B, Chem 81:222

    Article  Google Scholar 

  5. Szabo NF, Dutta PK (2004) Solid State Ion 171:183

    Article  CAS  Google Scholar 

  6. Martin LP, Pham IQ, Glass RS (2003) Sens Actuators, B, Chem 96:53

    Article  CAS  Google Scholar 

  7. Zhuiykov S, Ono T, Yamazoe N, Miura N (2002) Solid State Ion 152:801

    Article  Google Scholar 

  8. Szabo NF, Dutta PK (2003) Sens Actuators, B, Chem 88:168

    Article  Google Scholar 

  9. Elumalai P, Wang J, Zhuiykov S, Terada D, Hasei M, Miura N (2005) J Electrochem Soc 152:H95

    Article  CAS  Google Scholar 

  10. Plashnitsa VV, Ueda T, Miura N (2006) J Applied Ceram Tech 3:127

    Google Scholar 

  11. Brosha EL, Mukundan R, Brown DR, Garzon FH, Visser JH (2002) Solid State Ion 148:61

    Article  CAS  Google Scholar 

  12. Mochizuki K, Sorita R, Takashima H, Nakamura K, Lu G (2001) Sens Actuators, B, Chem 77:190

    Article  Google Scholar 

  13. Miura N, Wang J, Nakatou M, Elumalai P, Zhuiykov S, Hasei M (2006) Sens Actuators, B, Chem 114:903

    Article  CAS  Google Scholar 

  14. Xiong W, Kale GM (2006) Sens Actuators, B, Chem 114:101

    Article  CAS  Google Scholar 

  15. Miura N, Nakatou M, Zhuiykov S (2004) J Ceram Inter 30:1135

    Article  CAS  Google Scholar 

  16. Szabo NF, Du HB, Akber SA, Soliman A, Dutta PK (2002) Sens Actuators, B, Chem 82:142

    Article  Google Scholar 

  17. Doquier N, Candel S (2002) Prog Energy Combustion Sci 28:107

    Article  Google Scholar 

  18. Nakamura T, Sakamoto Y, Saji K, Sakata J (2003) Sens Actuators, B, Chem 93:214

    Article  CAS  Google Scholar 

  19. Magori E, Reinhardt G, Fleischer M, Mayer R, Meixner H (2003) Sens Actuators, B, Chem 95:162

    Article  CAS  Google Scholar 

  20. Shmidt-Zhang P, Guth U (2004) Sens Actuators, B, Chem 99:258

    Article  CAS  Google Scholar 

  21. Ono T, Hasei M, Kunimoto A, Miura N (2004) Solid State Ion 175:503

    Article  CAS  Google Scholar 

  22. Menil F, Coillard V, Lukat C (2000) Sens Actuators, B, Chem 67:1

    Article  Google Scholar 

  23. Zosel J, Ahlborn K, Müller R, Westphal D, Vashook V, Guth U (2004) Solid State Ion 169:115

    Article  CAS  Google Scholar 

  24. Menil F, Debeda H, Lukat C (2005) J Eur Ceram Soc 25:2105

    Article  CAS  Google Scholar 

  25. Bartolomeo ED, Grilli ML (2005) J Eur Ceram Soc 25:2959

    Article  CAS  Google Scholar 

  26. Garzon FH, Mukundan R, Lujan R, Brosha EL (2004) Solid State Ion 175:487

    Article  CAS  Google Scholar 

  27. Wachsman ED, Jayaweera P (2001) In: Waschamn ED, Weppner W, Traversa E, Liu M, Vanysek P, Yamazoe N (eds) Solid sate ionic devices II—ceramic sensors, PV 2000-32. The Electrochemical Society Proceedings Series, Pennington, NJ, p 298

    Google Scholar 

  28. Bartolomeo ED, Grilli ML, Traversa E (2004) J Electrochem Soc 151:H133

    Article  CAS  Google Scholar 

  29. Khatua S, Held G, King DA (2005) Surf Sci 586:1

    Article  CAS  Google Scholar 

  30. Eranna G, Joshi BC, Runthala DP, Gupta RP (2004) Solid State Materials Sci 29:111

    Article  CAS  Google Scholar 

  31. Bartolomeo ED, Grilli ML, Yoon JW, Traversa E (2004) J Am Ceram Soc 87:1883

    Article  Google Scholar 

  32. Hansen MV, Allen RG (2002) Harmony Books, New York, p 388

  33. Zhuiykov S (2006) Sens Actuators, B, Chem (in press)

  34. Subbarao ES, Maiti HS (1984) Solid State Ion 11:317

    Article  CAS  Google Scholar 

  35. Serbezov A, Sotirchos SV (2001) Separation Purification Tech 24:343

    Article  CAS  Google Scholar 

  36. Poate JM, Tu KN, Mayer JW (1978) Thin films—interdiffusion and reactions, Wiley-Interscience. New York, p 578

    Google Scholar 

  37. Belmonte T, Gouné M (2001) Mater Sci Eng A 302:246

    Article  Google Scholar 

  38. Marques R, Darcy P, Costa PD, Mellottée H, Trichard JM, Mariadassou GD (2004) J Mol Catal A Chem 221:127

    Article  CAS  Google Scholar 

  39. Er-raki M, Hasnaoui M, Amahmid A, Bourich M (2005) Engineering Computations: Int J Computer-Aided Eng 22:186

    Article  Google Scholar 

  40. Antropov LI (1975) The theoretical electrochemistry. High School, Moscow, p 540

    Google Scholar 

  41. Zhuiykov S (1998) Process Control Qual 11:23

    Article  CAS  Google Scholar 

  42. Zhuiykov S (2006) Sens Actuators, B, Chem (in press)

  43. Born M (1962) Einstain’s theory of relativity. Dover, NY, p 376

    Google Scholar 

  44. Lide DR. CRC Handbook of chemistry and physics. CRC, Boston, I-30

  45. Charykin AK (1984) Mathematical processing results of chemical analysis. Chemistry, Moscow, p 168

    Google Scholar 

  46. Novitsky PV, Zograf IA (1985) Evaluation the errors of measurement results. Energoatomizdat, Moscow, p 248

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Zhuiykov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuiykov, S. Mathematical model of electrochemical gas sensors with distributed temporal and spatial parameters and its transformation to models of the real YSZ-based sensors. Ionics 12, 135–148 (2006). https://doi.org/10.1007/s11581-006-0017-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-006-0017-3

Keywords

Navigation