Skip to main content
Log in

Optimal bubble riding with price-dependent entry: a mean field game of controls with common noise

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

In this paper we further extend the optimal bubble riding model proposed in Tangpi and Wang (Optimal bubble riding: a mean field game with varying entry times, 2022) by allowing for price-dependent entry times. Agents are characterized by their individual entry threshold that represents their belief in the strength of the bubble. Conversely, the growth dynamics of the bubble is fueled by the influx of players. Price-dependent entry naturally leads to a mean field game of controls with common noise and random entry time, for which we provide an existence result. The equilibrium is obtained by first solving discretized versions of the game in the weak formulation and then examining the measurability property in the limit. In this paper, the common noise comes from two sources: the price of the asset which all agents trade, and also the the exogenous bubble burst time, which we also discretize and incorporate into the model via progressive enlargement of filtration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abreu, D., Brunnermeier, M.K.: Bubbles and crashes. Econometrica 71(1), 173–204 (2003)

    Article  MathSciNet  Google Scholar 

  2. Ahuja, Saran: Wellposedness of mean field games with common noise under a weak monotonicity condition. SIAM J. Control Optim. 54(1), 30–48 (2016)

    Article  MathSciNet  Google Scholar 

  3. Akyildirim, E., Corbet, S., Cumming, D., Lucey, B., Sensoy, A.: Riding the wave of crypto-exuberance: the potential misusage of corporate blockchain announcements. Technol. Forecast. Soc. Change 159, 120191 (2020)

    Article  Google Scholar 

  4. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd edn. Springer, Cham (2006)

    Google Scholar 

  5. Allen, F., Morris, S., Postlewaite, A.: Finite bubbles with short sale constraints and asymmetric information. J. Econ. Theory 61(2), 206–229 (1993)

    Article  Google Scholar 

  6. Almgren, R., Chriss, N.: Optimal execution of portfolio transactions. J. Risk 3, 5–39 (2001)

    Article  Google Scholar 

  7. Awaya, Y., Iwasaki, K., Watanabe, M.: Rational bubbles and middlemen. Theor. Econ. 17(4), 1559–1587 (2022)

    Article  MathSciNet  Google Scholar 

  8. Azéma, J., Jeulin, T., Knight, F.B. Marc Y.: Le théorème d’arrêt en une fin d’ensemble prévisible. In: Séminaire de Probabilités XXVII, pp. 133–158. Springer, Berlin (1993)

  9. Bayraktar, E., Cecchin, A., Cohen, A., Delarue, F.: Finite state mean field games with wright–fisher common noise. Journal de Mathématiques Pures et Appliquées 147, 98–162 (2021)

    Article  MathSciNet  Google Scholar 

  10. Beaver, W.H.: The information content of annual earnings announcements. J. Account. Res. 6, 67–92 (1968)

    Article  Google Scholar 

  11. Belfadli, R., Hamadéne, S., Ouknine, Y.: On one-dimensional stochastic differential equations involving the maximum process. Stoch. Dyn. 9(02), 277–292 (2009)

    Article  MathSciNet  Google Scholar 

  12. Blanchet-Scalliet, C., Jeanblanc, M.: Hazard rate for credit risk and hedging defaultable contingent claims. Finance Stoch. 8(1), 145–159 (2004)

    Article  MathSciNet  Google Scholar 

  13. Bouchaud, J.-P., Farmer, J.D., Lillo, F.: Chapter 2: How markets slowly digest changes in supply and demand? In: Thorsten, H., Schenk-Hoppé, K.R. (eds.) Handbook of Financial Markets: Dynamics and Evolution, Handbooks in Finance, pp. 57–160. North-Holland (2009)

  14. Burzoni, M., Campi, L.: Mean field games with absorption and common noise with a model of bank run. Stoch. Process. Appl. 164, 206–241 (2023)

    Article  MathSciNet  Google Scholar 

  15. Cardaliaguet, P.: Notes on mean field games. In: Technical Report, Université de Paris - Dauphine (2012)

  16. Cardaliaguet, P., Delarue, F., Lasry, J.-M., Lions, P.-L.: The Master Equation and the Convergence Problem in Mean Field Games: (AMS-201). Princeton University Press, (2019). ISBN 9780691193717

  17. Carmona, R., Delarue, F.: Probabilistic Theory of Mean Field Games with Applications, vol. I. Springer, 1st edition (2018a)

  18. Carmona, R., Delarue, F.: Probabilistic Theory of Mean Field Games with Applictaions, vol. II. Springer, 1st edition (2018b)

  19. Carmona, R., Lacker, D.: A probabilistic weak formulation of mean field games and applications. Anna. Appl. Probab. 25(3), 1189–1231 (2015)

    MathSciNet  Google Scholar 

  20. Carmona, R., Delarue, F., Lacker, D.: Mean field games with common noise. Ann. Probab. 44(6), 3740–3803 (2016)

    Article  MathSciNet  Google Scholar 

  21. Cartea, A., Donnelly, R.F., Jaimungal, S.: Algorithmic trading with model uncertainty. SIAM J. Financ. Math. 8(1), 635–671 (2017)

    Article  MathSciNet  Google Scholar 

  22. Cheng, Stephanie F., De Franco, Gus, Jiang, Haibo, Lin, Pengkai: Riding the blockchain mania: public firms’ speculative 8-k disclosures. Manag. Sci. 65(12), 5901–5913 (2019)

    Article  Google Scholar 

  23. Cohen, S.N., Elliott, R.J., Pearce, C.E.M.: A general comparison theorem for backward stochastic differential equations. Adv. Appl. Probab. 42(3), 878–898 (2010)

    Article  MathSciNet  Google Scholar 

  24. Credit Suisse Corporate Insights Group: The Investor Landscape: Four Evolving Themes and Their Implications. Technical Report, Credit Suisse, NY (2022)

    Google Scholar 

  25. Delarue, F.: Restoring uniqueness to mean-field games by randomizing the equilibria. Stoch. Partial Differ. Equ. Anal. Comput. 7(4), 598–678 (2019)

    MathSciNet  Google Scholar 

  26. Delarue, F., Lacker, D., Ramanan, K.: From the master equation to mean field game limit theory: large deviations and concentration of measure. Ann. Probab. 48, 211–263 (2020)

    Article  MathSciNet  Google Scholar 

  27. Dellacherie, C., Maisonneuve, B., Paul-André M.: Probabilités et potentiel, chapitres XVII–XXIV, Processus de Markov (fin). Compléments de calcul stochastique, vol. 5. Hermann (1992)

  28. Djete, M.F.: Mean field games of controls: on the convergence of Nash equilibria. Ann. Appl. Probab. 33(4), 2824–2862 (2023)

    Article  MathSciNet  Google Scholar 

  29. Doblas-Madrid, A.: A robust model of bubbles with multidimensional uncertainty. Econometrica 80(5), 1845–1893 (2012)

    Article  MathSciNet  Google Scholar 

  30. Doblas-Madrid, A.: A finite model of riding bubbles. J. Math. Econ. 65, 154–162 (2016)

    Article  MathSciNet  Google Scholar 

  31. Pardoux, É.: Generalized discontinuous backward stochastic differential equations. In: El Karoui, N., Mazliak, L. (eds.) Backward Stochastic Differential Equations, Chapter IV, pp. 207–219. Addison Wesley Longman Limited (1997)

  32. Gangbo, W., Mészáros, A.R., Mou, C., Zhang, J.: Mean field games master equations with nonseparable hamiltonians and displacement monotonicity. Ann. Probab. 50(6), 2178–2217 (2022)

    Article  MathSciNet  Google Scholar 

  33. Griffin, J.M., Harris, J.H., Shu, T., Topaloglu, S.: Who drove and burst the tech bubble? J. Finance 66(4), 1251–1290 (2011)

    Article  Google Scholar 

  34. Haussmann, U.G., Lepeltier, J.P.: On the existence of optimal controls. SIAM J. Control Optim. 28(4), 851–52 (1990)

    Article  MathSciNet  Google Scholar 

  35. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–252 (2006)

    Article  MathSciNet  Google Scholar 

  36. Huang, M., Caines, P.E., Malhame, R.P.: The Nash certainty equivalence principle and Mckean–Vlasov systems: an invariance principle and entry adaptation. In: 2007 46th IEEE Conference on Decision and Control, pp. 121–126 (2007)

  37. Jackson, J., Tangpi, L.: Quantitative convergence for displacement monotone mean field games with controlled volatility (2023)

  38. Jacod, J., Mémin, J.: Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité. Séminaire de probabilités de Strasbourg, Tome 15, 529–546 (1981)

    Google Scholar 

  39. Johansen, A., Sornette, D., Ledoit, O.: Predicting financial crashes using discrete scale invariance. J. Risk 1(4), 5–32 (1999)

    Article  Google Scholar 

  40. Johansen, A., Ledoit, O., Sornette, D.: Crashes at critical points. Int. J. Theor. Appl. Finance 3, 219–255 (2000)

    Article  Google Scholar 

  41. Brunnermeier, M.K., Nagel, S.: Hedge funds and the technology bubble. J. Finance 59(5), 2013–2040 (2004)

    Article  Google Scholar 

  42. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, 2nd edn. Springer, New York (1991)

    Google Scholar 

  43. El Karoui, N., Du, N.H., Jeanblanc-Picqué, M.: Compactification methods in the control of degenerate diffusions: existence of an optimal control. Stochastics 20(3), 169–219 (1987)

    Article  MathSciNet  Google Scholar 

  44. Kharroubi, I., Lim, T.: Progressive enlargement of filtrations and Backward SDEs with jumps. J. Theor. Probab. 27, 683–724 (2014)

    Article  Google Scholar 

  45. Kurtz, T.: Weak and strong solutions of general stochastic models. Electron. Commun. Probab. 19, 1–16 (2014)

    Article  MathSciNet  Google Scholar 

  46. Lacker, D.: A general characterization of the mean field limit for stochastic differential games. Probab. Theory Relat. Fields 165(3), 581–648 (2016)

    Article  MathSciNet  Google Scholar 

  47. Lacker, D., Le Flem, L.: Closed-loop convergence for mean field games with common noise. Ann. Appl. Probab. 33(4), 2681–2733 (2023)

    Article  MathSciNet  Google Scholar 

  48. Lacker, D., Shkolnikov, M., Zhang, J.: Superposition and mimicking theorems for conditional Mckean Vlasov equations. J. Eur. Math. Soc. (2020)

  49. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. I-le cas stationnaire. Comptes Rendus Mathematique 343(9), 619–625 (2006)

  50. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. II-horizon fini et contrôle optimal. Comptes Rendus Mathematique 343(10), 679–684 (2006)

    Article  MathSciNet  Google Scholar 

  51. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MathSciNet  Google Scholar 

  52. Laurière, M., Tangpi, L.: Convergence of large population games to mean field games with interaction through the controls. SIAM J. Math. Anal. 54(3), 3535–3574 (2022)

    Article  MathSciNet  Google Scholar 

  53. Leal, L.S.: Topics in High-Frequency Optimal Execution and Microstructure of Product Repricings. Ph.D. thesis, Princeton University (2022)

  54. Liu, F., Conlon, J.R.: The simplest rational greater-fool bubble model. J. Econ. Theory 175, 38–57 (2018)

    Article  MathSciNet  Google Scholar 

  55. Tóth, B., Mastromatteo, I., Bouchaud, J.P.: Anomalous impact in reaction-diffusion financial models. Phys. Rev. Lett. 113, 268701 (2014)

    Article  Google Scholar 

  56. Mou, C., Zhang, J.: Mean field game master equations with anti-monotonicity conditions (2022)

  57. Pohl, M., Ristig, A., Schachermayer, W., Tangpi, L.: The amazing power of dimensional analysis: quantifying market impact. Market Microstruct. Liq. 3(3–4), 1850004 (2018)

    Google Scholar 

  58. Rubinstein, A., Wolinsky, A.: Middlemen. Q. J. Econ. 102(3), 581–593 (1987)

    Article  MathSciNet  Google Scholar 

  59. Sornette, D.: Critical market crashes. Phys. Rep. 378(1), 1–98 (2003)

    Article  MathSciNet  Google Scholar 

  60. Sornette, D., Woodard, R., Yan, W., Zhou, W.-X.: Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model. Phys. A Stat. Mech. Appl. 392(19), 4417–4428 (2013)

    Article  Google Scholar 

  61. Sotes-Paladino, J., Zapatero, F.: Riding the bubble with convex incentives. Rev. Financ. Stud. 32(4), 1416–1456 (2018)

    Article  Google Scholar 

  62. Tangpi, L, Wang, S: Optimal Bubble Riding: A Mean Field Game with Varying Entry Times (2022). arXiv preprint:https://arxiv.org/abs/2209.04001

  63. Villani, C.: Optimal Transport. Springer, Berlin (2009)

    Book  Google Scholar 

  64. Yamada, T., Watanabe, S.: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11(1), 155–167 (1971)

    MathSciNet  Google Scholar 

  65. Yor, M.: Application d’un lemme de Jeulin au grossissement de la filtration brownienne. Séminaire de probabilités de Strasbourg 14, 189–199 (1980)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Tangpi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors wish to thank Camilo Hernández for fruitful discussions. L.T. is partially supported by the NSF Grant DMS-2005832, the NSF CAREER award DMS-2143861 and the AMS Claytor-Gilmer fellowship. S.W. is partially supported by the NSF grant DMS-2005832.

Two auxiliary results

Two auxiliary results

For a càdlàg process Y, denote by \(M^Y_t = \sup _{0 \le s \le t}Y_s\) its running maximum. Recall from (1) and the price dynamics of the N-player game that the bubble trend function b naturally depends on \(F_p(M^P_t)\), which is not Lipschitz in \(M^P\). In general, the dynamics of asset price in the bubble phase is not well-posed. However, as the bubble is fueled by players’ entry, b should be increasing in \(F_p(M^P_t)\), hence also increasing in \(M^P_t\) at each time \(t \in [0, T]\) since \(F_p\) is a CDF. This monotonicity property of the path-dependent SDE (2) restores unique solvability.

Proposition A.1

The following path-dependent SDE

$$\begin{aligned} X_t = x + \int _0^t{\tilde{b}}(s, M^X_s, X_s)ds + \sigma _0 B_t \end{aligned}$$
(50)

has a unique strong solution satisfying \(\mathbb {E}[\Vert X\Vert _\infty ^2] < \infty \) if for each fixed \(t\in [0,T]\):

  1. (1)

    There exists \(C > 0\) such that for all \(\varvec{x}\in C([0, T]; \mathbb {R})\):

    $$\begin{aligned} \left| {\tilde{b}}\left( t, M^{\varvec{x}}_t, \varvec{x}_t\right) \right| \le C\left( 1 + M^{|\varvec{x}|}_t\right) . \end{aligned}$$
  2. (2)

    \({\tilde{b}}(t, \cdot , \cdot )\) is increasing (not necessarily strictly) in each argument.

Proof

We adapt the proof of [11, Theorem 4.1]. The first condition guarantees a weak solution satisfying the integrability condition that is unique in law (see [42, Proposition 5.3.6 and Remark 5.3.8]). By the well-known result of Yamada and Watanabe [64], we only need to show pathwise uniqueness. Suppose X and Y are two solutions on the same probability space with respect to the same Brownian motion B. Observing that \(X - Y\) is absolutely continuous, by Tanaka’s formula we get

$$\begin{aligned} \begin{aligned} X_t \vee Y_t&= Y_t + (X_t - Y_t)^+ = Y_t + \int _0^t\mathbb {1}_{\{X_s> Y_s\}}d(X_s - Y_s) \\&= x + \sigma _0 B_t + \int _0^t\mathbb {1}_{\{X_s> Y_s\}}{\tilde{b}}(s, M^X_s, X_s)ds + \int _0^t\mathbb {1}_{\{X_s \le Y_s\}}{\tilde{b}}(s, M^Y_s, Y_s)ds.\\ Y_t \vee X_t&= x + \sigma _0 B_t + \int _0^t\mathbb {1}_{\{Y_s > X_s\}}{\tilde{b}}(s, M^Y_s, Y_s)ds + \int _0^t\mathbb {1}_{\{Y_s \le X_s\}}{\tilde{b}}(s, M^X_s, X_s)ds. \end{aligned} \end{aligned}$$
(51)

We can equate the above expressions for all t, implying that for almost every t we have

$$\begin{aligned} \mathbb {1}_{\{X_t = Y_t\}} \left( {\tilde{b}}(t, M^Y_t, Y_t) - {\tilde{b}}(t, M^X_t, X_t)\right) = 0. \end{aligned}$$
(52)

We now show that if \(X_s > Y_s\), then \(M^X_s \ge M^Y_s\). Define

$$\begin{aligned} s_0 :=\sup \{u \in [0, s]: X_u = Y_u\}. \end{aligned}$$

The case is trivial if \(s_0 = 0\).

On the event \(\{s_0 > 0\}\), continuity of X and Y implies that \(X_t > Y_t\) for all \(t \in (s_0, s]\). Suppose \(M^X_s < M^Y_s\), then there must exist \(s^* \in [0, s_0)\) where \(Y_{s^*} = M^Y_s > M^X_s \ge X_{s^*}\). Then define

$$\begin{aligned} s_1 :=\inf \{u \in [s^*,s_0]: X_u = Y_u\}. \end{aligned}$$

By continuity again, \(Y_t > X_t\) for all \(t \in [s^*, s_1)\). By definition of \(s^*\), we must also have \(M^Y_{t} > M^X_{t}\) for all \(t \in [s^*, s_1)\). Monotonicity of \({\tilde{b}}\) leads to a contradiction

$$\begin{aligned} 0 > X_{s^*} - Y_{s^*} = \int _{s^*}^{s_1}{\tilde{b}}(t, M^Y_t, Y_t) - {\tilde{b}}(t, M^X_t, X_t)dt\ge 0. \end{aligned}$$

Therefore, \(M^X_s \ge M^Y_s \) and in particular, \(M^{X\vee Y}_s = M^{X}_s\). We can then rewrite (51) as

$$\begin{aligned} X_t \vee Y_t&= x + \sigma _0 B_t + \int _0^t{\tilde{b}}(s, M^{X \vee Y}_s, X_s \vee Y_s)ds \\&\quad + \int _0^t\mathbb {1}_{\{X_s = Y_s\}}\left( {\tilde{b}}(s, M^{Y}_s, Y_s) - {\tilde{b}}(s, M_s^{X \vee Y}, X_s \vee Y_s)\right) ds\\&= x + \sigma _0 B_t + \int _0^t{\tilde{b}}(s, M^{X \vee Y}_s, X_s \vee Y_s)ds \\&\quad + \int _0^t\mathbb {1}_{\{\{X_s = Y_s\} \cap \{M^{X}_s > M^{Y}_s\}\}}\left( {\tilde{b}}(s, M^{Y}_s, Y_s) - {\tilde{b}}(s, M_s^{X \vee Y}, X_s \vee Y_s)\right) ds. \end{aligned}$$

where the last line vanishes by (52). Therefore, \(X \vee Y\) also satisfies (50). Similarly, one can show \(X \wedge Y\) is also a solution. Then by uniqueness of law, we have \(\mathbb {E}[|X - Y|] = \mathbb {E}[X\vee Y - X\wedge Y] = 0\) which leads to pathwise-uniqueness and completes the proof. The integrability property easily follows from Grönwall’s inequality. \(\square \)

The following measure theoretic result is probably well known. We give a proof since we could not find a directly citable reference.

Lemma A.2

Let \((S, \Sigma , \mu )\) be a complete measurable space. A function \(f: S \times \mathbb {R}\rightarrow \mathbb {R}\) is jointly measurable if for all \(x \in \mathbb {R}\):

  1. (1)

    \(f(\cdot , x)\) is measurable.

  2. (2)

    \(f(\cdot , x_n)\) converges to \(f(\cdot , x)\) in \(\mu \)-measure for any increasing sequence \(x_n \uparrow x\).

Proof

First let \(E \subseteq \mathbb {R}\) be any closed set and let \(X = \{x_m\}_{m \ge 1}\) be a countable, dense subset of \(\mathbb {R}\). For \(\varepsilon > 0\), denote by \({\mathcal {O}}_{\epsilon }(E)\) the open set \(\{x \in \mathbb {R}: \inf _{e \in E}|x - e| < \varepsilon \}\). We claim that for \(\mu \)-almost every \(s \in S\) and any \(x \in \mathbb {R}\), \(f(s, x) \in E\) if and only if for each \(n \in \mathbb {N}\), there is \(x_m \in X \cap (x - \frac{1}{n}, x]\) such that \(f(s, x_m) \in {\mathcal {O}}_{\frac{1}{n}}(E)\). Note that we can always approximate any \(x \in \mathbb {R}\) by an increasing sequence \(\{x_{m_k}\}_{k \ge 1}\) with elements in X such that the functions \(f(\cdot , x_{m_k})\) converge \(\mu \)-almost everywhere to \(f(\cdot , x)\). The claim follows almost immediately. Denoting by \(f^{-1}\) the preimage of f, joint measurability is proved by writing

$$\begin{aligned} f^{-1}(E) = \bigcap _{n = 1}^\infty \bigcup _{m = 1}^{\infty }\left\{ s \in S:f(s, x_m) \in {\mathcal {O}}_{\frac{1}{n}}(E)\right\} \times \left[ x_m, x_m + \frac{1}{n}\right) . \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tangpi, L., Wang, S. Optimal bubble riding with price-dependent entry: a mean field game of controls with common noise. Math Finan Econ (2024). https://doi.org/10.1007/s11579-024-00353-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11579-024-00353-3

Keywords

Navigation