Skip to main content
Log in

The lifetime of a financial bubble

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

We combine both a mathematical analysis of financial bubbles and a statistical procedure for determining when a given stock is in a bubble, with an analysis of a large data set, in order to compute the empirical distribution of the lifetime of financial bubbles. We find that it follows a generalized gamma distribution, and we provide estimates for its parameters. We also perform goodness of fit tests, and we provide a derivation, within the context of bubbles, that explains why the generalized gamma distribution might be the natural one to expect for the lifetimes of financial bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agarwal, S., Al-Saleh, J.: Generalized gamma type distribution and its hazard rate function. Commun. Stat. Theory Methods 30(2), 309–318 (2001). doi:10.1081/STA-100002033

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersen, L.B.G., Piterbarg, V.: Moment explosions in stochastic volatility models. Financ. Stoch. 11, 29–50 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  4. Bayraktar, E., Kardaras, C., Xing, H.: Strict local martingale deflators and valuing American call-type options. Financ. Stoch. 16, 275–291 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biagini, F., Föllmer, H., Nedelcu, S.: Shifting martingale measures and the slow birth of a bubble. Financ. Stoch. 18, 297–326 (2014)

    Article  MATH  Google Scholar 

  6. Cox, A., Hobson, D.: Local martingales, bubbles and option prices. Financ. Stoch. 9, 477–492 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cox, C.: The generalized F distribution: an umbrella for parametric survival analysis. Stat. Med. 27, 4301–4312 (2008)

    Article  MathSciNet  Google Scholar 

  8. Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312(2), 215–250 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Delbaen, F., Shirakawa, H.: No arbitrage condition for positive diffusion price processes. Asia-Pacific Financ. Mark. 9, 159–168 (2002)

    Article  MATH  Google Scholar 

  10. Florens-Zmirou, D.: On estimating the diffusion coefficient from discrete observations. J. Appl. Probab. 30, 790–804 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Herdegen, M., Schweizer, M.: Economics-Based Financial Bubbles (and Why They Imply Strict Local Martingales), Swiss Finance Institute Research Paper No. 15-05. doi:10.2139/ssrn.2566815, SSRN: http://ssrn.com/abstract=2566815 (2015)

  12. Hollebeek, T., Ho, T.S., Rabitz, H.: Constructing multidimensional molecular potential energy surfaces from AB initio data. Annu. Rev. Phys. Chem. 50, 537–570 (1999)

    Article  Google Scholar 

  13. Jacod, J.: Rates of convergence to the local time of a diffusion. Ann. l’Inst. Henri Poincaré, Sect. B 34, 505–544 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jacod, J.: Non-parametric Kernel estimation of the coefficient of a diffusion. Scand. J. Stat. 27, 83–96 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jacod, J., Protter, P.: Probability Essentials, 2nd edn. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  16. Jacod, J., Protter, P.: Strict Local Martingale Solutions of Stochastic Differential Equations. Working Paper (2015)

  17. Jarrow, R., Kchia, Y., Protter, P.: How to detect an asset bubble. SIAM J. Financ. Math. 2, 839–865 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jarrow, R., Protter, P., Shimbo, K.: Asset price bubbles in a complete market. In: Madan, D.B. (ed.) Advances in Mathematical Finance, pp. 105–130. Birkhauser, Boston (2006)

    Google Scholar 

  19. Jarrow, R., Protter, P., Shimbo, K.: Asset price bubbles in incomplete markets. Math. Financ. 20, 145–185 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kardaras, C., Kreher, D., Nikeghbali, A.: Strict local martingales, bubbles. Ann. Appl. Probab. 25, 1827–1867 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kotani, S.: On a condition that one dimensional diffusion processes are martingales. Memoriam Paul-André Meyer. Springer, Berlin (2006)

    MATH  Google Scholar 

  22. Lienhard, J.H., Meyer, P.L.: A physical basis for the generalized gamma distribution. Q. Appl. Math. 25(3), 330–334 (1967)

    Article  MATH  Google Scholar 

  23. Lions, P.L., Musiela, M.: Correlations and bounds for stochastic volatility models. Ann. Inst. Henri Poincaré, (C) Nonlinear Anal. 24(1), 1–16 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Loewenstein, M., Willard, G.A.: Rational equilibrium asset-pricing bubbles in continuous trading models. J. Econ. Theory 91, 17–58 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mijatović, A., Urusov, M.: On the martingale property of certain local martingales. Probab. Theory Relat. Fields 152, 1–30 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Prentice, R.L.: A log gamma model and its maximum likelihood estimation. Biometrika 61(3), 539–544 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  27. Protter, P.: A mathematical theory of financial bubbles. In: Benth, F.E., et al. (eds.) Paris-Princeton Lectures on Mathematical Finance 2013, Lecture Notes in Mathematics (2081), pp. 1–108. Springer, Cham (2013)

    Chapter  Google Scholar 

  28. Schneikman, J., Xiong, W.: Overconfidence and speculation bubbles. J. Polit. Econ. 111(6), 1183–1220 (2003)

    Article  Google Scholar 

  29. Stacy, E.W.: A generalization of the gamma distribution. Ann. Math. Stat. 33, 1187–1192 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sommerfeld, A.: Lectures on Theoretical Physics: Thermodynamics and Statistical Mechanics, vol. 5. Acadmemic Press, New York (1964)

    MATH  Google Scholar 

  31. Zhang, L., Mykland, P., Aït-Sahalia, Y.: A tale of two time scales: Determining integrated volatility with noisy high-frequency data. J. Am. Stat. Assoc. 100(472), 1394–1411 (2005). doi:10.1198/016214505000000169

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We wish to thank an anonymous referee and the editor Frank Riedel for helpful comments and observations which have improved the paper. A question from Bob Jarrow led to our reporting the actual number of bubbles we observed during the 13 year period 2000 to 2014 (see Sect. 3). Supported in part by NSF Grant DMS-1308483.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Protter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obayashi, Y., Protter, P. & Yang, S. The lifetime of a financial bubble. Math Finan Econ 11, 45–62 (2017). https://doi.org/10.1007/s11579-016-0170-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-016-0170-z

Keywords

JEL Classification

Navigation