Skip to main content
Log in

Jump-diffusion international asset allocation

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

We examine international asset allocation with jump-diffusion assets in the presence of risky deviations of exchanges rates from purchasing power parity when investors consume both traded and nontraded goods. We show that adding new jump risks to existing diffusion assets does not alter investors’ original optimal portfolios of diffusion assets, as long as diffusion-risk premia remain unchanged. We also show that hedge portfolios against purchasing power parity deviations are integral parts of optimal portfolios for investors from different countries, and they can be constructed by using foreign and domestic inflation-indexed bonds. Moreover, country-specific demand for risky assets can arise from nontraded-good-specific inflation-rate-differential risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This result is in contrast with a comment by Adler and Dumas (AD) [1, footnote 54].

  2. [4] uses a regime shift model to support the usefulness of international diversification in spite of high correlations of international equity market returns. Their regime shift model may also be interpreted as a jump-diffusion model in effect.

  3. The effectiveness of TIPS bonds as an inflation-rate risk hedging instrument seems controversial in the literature. See [15] and references therein. Nevertheless, our result indicates that the new role of TIPS bonds in PPP-deviation hedging needs to be empirically tested.

  4. The PPP-deviation risk can also be defined as AD’s [1985] inflation rate differential. Recall that AD define inflation rates in terms of the reference currency. Let \(\varphi _c^l(t)\) be the price level of country-l traded common good in the reference currency. Then for country l, \(\varphi _c^l(t) = S_A^l(t) P_c^l(t)\), and for the reference country, \(\varphi _c^*(t) = P_c^*(t)\) because \(S_A^* \equiv 1\). Although one may use AD’s inflation rate differential \(d\varphi _c^l/\varphi _c^l - d\varphi _c^*/\varphi _c^*\) for PPP-deviation risk, we find our definition of PPP deviation turns out to be more convenient in expressing effects of PPP-deviation risks in light of international-asset portfolio decisions.

  5. See [14] whose empirical evidence leads them to reject the PPP. More recently, [5] empirically show that a generalized real business cycle model explains exchange rates better than PPP, and [8] also reject the PPP even when the presence of nontraded goods is taken into account. However, the mean reverting properties of the PPP appear to be controversial: [12] rejects whereas [28] support the properties.

  6. Later, one can see that the Solnik/Sercu result also holds with multiple goods if both \(P_c^l\) and \(P_n^l\) are deterministic.

  7. To see this well-known result, note that

    $$\begin{aligned} \hat{W}(t) = - \int _t^T \hat{W}(s) \alpha _A^{\top } (\sigma _A d\hat{z}(s) + \phi _A d\hat{M}(s)) + \int _t^T e^{-\int _0^sr(u)du} (C_c(s) + C_n(s)) ds. \end{aligned}$$

    Thus,

    $$\begin{aligned} \hat{W}(t) = E^Q \left[ \left. \int _t^T e^{-\int _0^sr(u)du} (C_c(s) + C_n(s)) ds \, \right| \, {\mathcal {F}}_t \right] = e^{-\int _0^tr(u)du} F(t). \end{aligned}$$

    Therefore, \(F(t) = W(t)\).

  8. [20, p. 2214, Eq. (18)] also use the Cox–Huang martingale method to examine an international asset allocation problem in a [24] world, and show that the hedging terms for state variables can be interpreted as hedging demand for the random volatility of the contingent Arrow–Debreu security prices relevant to the investor’s horizon. They argue exchange-rate/PPP-deviation risks are also included in the random volatility.

  9. The value function can alternatively be expressed as follows:

    $$\begin{aligned} V(t) = \kappa \frac{(a_n)^{a_n}(a_c)^{a_c}}{a^{a}} \left( \frac{P_c(t)}{P_n(t)} \right) ^{a_n} \left( \frac{W(t)}{e^{D(t)}P_c^*(t)}\right) ^{a} g_{\eta c}(t) g_v(t), \end{aligned}$$

    where

    $$\begin{aligned} g_{\eta c}(t) = \left\{ \begin{array}{l@{\quad }l} \frac{1}{(T-t)^{a}}, &{} \text{ if } \mu _{\eta c}+\phi _{\eta c}^{\top }\lambda = 0, \\ \left( \frac{\mu _{\eta c}+\phi _{\eta c}^{\top }\lambda }{e^{(\mu _{\eta c} + \phi _{\eta c}^{\top }\lambda )(T-t)} - 1 }\right) ^{a}, &{} \text{ otherwise }, \end{array} \right. \end{aligned}$$

    and \((\mu _{\eta c}, \phi _{\eta c})\) is the pair of constants for the drift and jump rates of \(d \eta _c\), as defined in the proof of Proposition 1.

  10. We leave this case for future research.

  11. More precisely, \(\Psi /q^l\), instead of \(\Psi \), is a global variable. However, since the difference between the two is only by the constant multiplier and qualitatively inconsequential, we still call \(\Psi \) a global variable.

  12. For example, in Proposition 1, \(\Delta \bar{F}^l = (\Delta \bar{F}_1^l,\ldots ,\Delta \bar{F}_L^l)^{\top }\) with \( \Delta \bar{F}_k^l = W^l \left\{ \left( \theta ^k/\lambda ^k \right) ^{-(1/(1-a))} -1 \right\} \) for all \(k = 1,\ldots ,L\); and \(\Delta F_l^l - \Delta \bar{F}_l^l = W^l \left( e^{- (a \phi _{D^l}/(1-a))} - 1 \right) \left( \theta ^l/\lambda ^l \right) ^{-(1/(1-a))}\).

  13. For a detailed interpretation of this portfolio, see [2].

  14. The dynamics expressed in (29) can serve as a proof of the assumption made by [13, Eq. (25)] on his indexed bond price dynamics.

  15. The modification is available upon request.

  16. Notes on some basics: Suppose

    $$\begin{aligned} \frac{dA(t)}{A(t-)} = \mu dt + \sigma ^{\top } dz(t) + \sum _{l=1}^L \phi _l dN^l(t), \end{aligned}$$

    where \(\mu \), \(\sigma \), and \(\phi \) are all constant. Then, the solution is

    $$\begin{aligned} A(t) = A(0)e^{\left( \mu + \frac{1}{2}\sigma ^{\top }\sigma \right) t +\sigma ^{\top } z(t) + \sum _{l=1}^L \ln (1 + \phi _l)N^l(t)}, \end{aligned}$$

    and

    $$\begin{aligned} E[A(T) \, | \, A(t)\, ] = A(t) e^{\left( \mu + \sum _{l=1}^L \lambda ^l \phi _l\right) (T-t)}. \end{aligned}$$

References

  1. Adler, M., Dumas, B.: International portfolio choice and corporate finance: a synthesis. J. Financ. 38, 925–984 (1983)

    Article  Google Scholar 

  2. Adler, M., Prasad, B.: On universal currency hedges. J. Financ. Quant. Anal. 27, 19–38 (1992)

    Article  Google Scholar 

  3. Akgiray, V., Booth, G.: Mixed diffusion-jump process modeling of exchange rate movements. Rev. Econ. Stat. 70, 631–637 (1988)

    Article  Google Scholar 

  4. Ang, A., Bekaert, G.: International asset allocation with regime shifts. Rev. Financ. Stud. 15, 1137–1187 (2002)

    Article  Google Scholar 

  5. Apte, P., Sercu, P., Uppal, R.: The exchange rate and purchasing power parity: extending the theory and tests. J. Int. Money Financ. 23, 553–571 (2004)

    Article  Google Scholar 

  6. Bates, D.: Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options. Rev. Financ. Stud. 9, 69–107 (1996)

    Article  Google Scholar 

  7. Baxter, B., Jermann, U.J., King, R.G.: Nontraded goods, nontraded factors, and international non-diversification. J. Int. Econ. 44, 211–229 (1998)

    Article  Google Scholar 

  8. Betts, C.M., Kehoe, T.J.: U.S. Real Exchange Rate Fluctuations and Relative Price Fluctuations. Federal Reserve Bank of Minneapolis, Research Department Staff Report 334 (2005)

  9. Brèmaud, P.: Point Process and Queues: Martingale Dynamics. Spinger, New York (1981)

    Book  MATH  Google Scholar 

  10. Cox, J.C., Huang, C.: Optimal consumption and portfolio policies when asset prices follow a diffusion process. J. Econ. Theory 49, 33–83 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Das, S., Uppal, R.: Systematic risk and international portfolio choice. J. Financ. 59, 2809–2834 (2004)

    Article  Google Scholar 

  12. Dumas, B.: Dynamic equilibrium and the real exchange rate in a spatially separated world. Rev. Financ. Stud. 5, 153–180 (1992)

    Article  Google Scholar 

  13. Fisher, S.: The demand for indexed bonds. J. Polit. Econ. 83, 509–534 (1975)

    Article  Google Scholar 

  14. Froot, K., Rogoff, K.: Perspectives on PPP and long-run real exchange rates. In: Grossman, G., Rogoff, K. (eds.) Handbook of International Economics, pp. 1647–1688. North Holland, Amsterdam (1995)

    Google Scholar 

  15. Hunter, D.M., Simon, D.P.: Are TIPS the “real” deal?: a conditional assessment of their role in a nominal portfolio. J. Bank. Financ. 29, 347–368 (2005)

    Article  Google Scholar 

  16. Jorion, P.: On jump process in the foreign exchange and stock markets. Rev. Financ. Stud. 1, 427–445 (1988)

    Article  Google Scholar 

  17. Karatzas, I.: Optimization problems in the theory of continuous trading. SIAM J. Control Optim. 27, 1221–1259 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karatzas, I., Lehoczky, J., Shreve, S.: Optimal portfolio and consumption decisions for a “small investor” on a finite horizon. SIAM J. Control Optim. 25, 1557–1586 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kollmann, R.: A dynamic equilibrium model of international portfolio holdings: comment. Econometrica 74, 269–273 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lioui, A., Poncet, P.: International asset allocation: a new perspective. J. Bank. Financ. 27, 2203–2230 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, J., Longstaff, F.A., Pan, J.: Dynamic asset allocation with event risk. J. Financ. 58, 231–259 (2003)

    Article  Google Scholar 

  22. Sercu, P.: A generalization of the international asset pricing model. Finance: Revue de l’Association Francaise de Finance 1, 91–135 (1980)

    Google Scholar 

  23. Serrat, A.: A dynamic equilibrium model of international portfolio holdings. Econometrica 69, 1467–1489 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Solnik, B.: An equilibrium model of the international capital market. J. Econ. Theory 8, 500–524 (1974)

    Article  MathSciNet  Google Scholar 

  25. Stockman, A.C., Dellas, H.: International portfolio nondiversification and exchange rate variability. J. Int. Econ. 26, 271–289 (1989)

    Article  Google Scholar 

  26. Stulz, R.: A model of international asset pricing. J. Financ. Econ. 9, 383–406 (1981)

    Article  Google Scholar 

  27. Stulz, R.: An equilibrium model of exchange rate determination and asset pricing with nontraded goods and imperfect information. J. Polit. Econ. 95, 1024–1040 (1987)

    Article  Google Scholar 

  28. Taylor, M.P., Peel, D.A.: Nonlinear adjustment, long-run equilibrium and exchange rate fundamentals. J. Int. Money Financ. 19, 35–53 (2000)

    Article  Google Scholar 

  29. Tesar, L.L.: International risk-sharing and non-traded goods. J. Int. Econ. 35, 69–89 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank the two anonymous referees, Frank Riedel (the editor), and particularly Alex Zimper (the associate editor) for insightful comments and suggestions. All remaining errors are mine

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeyoung Sung.

Appendix

Appendix

1.1 Proof of Theorem 1

Recall \(\varphi _c = S_AP_c = e^DP_c^*\) and \(\varphi _n = S_AP_n = e^D P_c^* (P_n/P_c)\). Let \((G_c, G_n)\) be the inverse of \((U_{C_{Rc}},U_{C_{Rn}})\) with respect to \((C_{Rc},C_{Rn})\). Then the solution to (17) and (18) is given by

$$\begin{aligned} C_c(t)= & {} \varphi _c(t) G_c(\varphi _c(t)\Psi (t),\varphi _n(t)\Psi (t),t), \end{aligned}$$
(31)
$$\begin{aligned} C_n(t)= & {} \varphi _n(t) G_n(\varphi _c(t)\Psi (t),\varphi _n(t)\Psi (t),t). \end{aligned}$$
(32)

And the optimal consumption budget is

$$\begin{aligned}&E^{Q} \left[ \int _0^T e^{-\int _0^tr(u)du} (C_c + C_n) dt \right] \\&\quad = \frac{1}{q} E \left[ \int _0^T q e^{-\int _0^tr(u)du} \xi (t) (C_c + C_n) dt \right] \\&\quad = \frac{1}{q} E \left[ \int _0^T \Psi (t)\left\{ \varphi _c(t) G_c + \varphi _n(t) G_n \right\} dt \right] \end{aligned}$$

Thus, by the Bayes rule

$$\begin{aligned}&E^{Q} \left[ \left. \int _t^T e^{-\int _0^sr(u)du} (C_c + C_n) ds \quad \right| \, {\mathcal {F}}_t \right] \\&\quad = \frac{1}{q\xi (t)} E \left[ \left. \int _t^T q^l e^{-\int _0^sr(u)du} \xi (s) (C_c + C_n) ds \, \right| \, {\mathcal {F}}_t \right] \\&\quad = e^{-\int _0^tr(u)du}\frac{1}{\Psi (t)} E \left[ \left. \int _t^T \Psi (s)\left\{ \varphi _c(s) G_c + \varphi _n(s)G_n \right\} \, ds \, \right| \, {\mathcal {F}}_t \right] \\&\quad = e^{-\int _0^tr(u)du}\frac{1}{\Psi (t)} E \left[ \left. \int _t^T \Psi (s)e^{D(s)}P_c^*(s) \left\{ G_c + \frac{P_n(s)}{P_c(s)} G_n \right\} \, ds \, \right| \, {\mathcal {F}}_t \right] \\&\quad = e^{-\int _0^tr(u)du}F(\Psi (t), D(t), P_c^*(t), P_c(t), P_n(t), X(t),t) = e^{-\int _0^tr(u)du}F(t). \end{aligned}$$

For the last equality/definition, we have utilized the joint Markovian assumption. Then \(F(0) = W(0)\), \(F(T) = 0\), and one can modify the standard procedure of [10] for jumps to show the optimal portfolio policy as follows:Footnote 15

$$\begin{aligned}&W(t)\left( \alpha _A^{\top }\phi _A + \alpha _J^{\top }\phi _J\right) = (\Delta F_1(t),\ldots ,\Delta F_L(t)) \end{aligned}$$
(33)
$$\begin{aligned}&W(t) \alpha _A^{\top } \sigma _A = - F_{\Psi } \Psi \nu ^{\top } + F_{D} \sigma _{D}^{\top } + F_{P_c^*} P_c^*(t) \sigma _{p_c^*}^{\top } + F_{P_c} P_c(t) \sigma _{p_c}^{\top } \nonumber \\&\quad \qquad \qquad \qquad +\, F_{P_n} P_n(t) \sigma _{p_n}^{\top } + F_X^{\top } \sigma _X. \end{aligned}$$
(34)

Since \(F > 0\) by the assumption of an interior solution, Eq. (34) can be rewritten as in Eq. (21).

For Part (ii), note that \(G_c\) and \(G_n\) are functions of \((D^l,Y_c^l,Y_n^l)\). Since \((D^l, Y_c^l,Y_n^l, X)\) are jointly Markov, one can alternatively write F as follows:

$$\begin{aligned}&e^{-\int _0^tr(u)du}F(.,t) \\&\quad = e^{-\int _0^tr(u)du}\frac{1}{\Psi (t)} E \left[ \left. \int _t^T \Psi (s)e^{D(s)}P_c^*(s) \left\{ G_c + \frac{P_n(s)}{P_c(s)} G_n \right\} \, ds \, \right| \, {\mathcal {F}}_t \right] \\&\quad = e^{-\int _0^tr(u)du}\frac{1}{\Psi (t)} E \left[ \int _t^T \left. \left\{ e^{D(s)}Y_c(s) G_c + e^{D(s)}Y_n(s) G_n \right\} \, ds \, \right| \, D(t), Y_c(t), Y_n(t), X(t) \right] \\&\quad = e^{-\int _0^tr(u)du}\frac{1}{\Psi (t)} H(D(t), Y_c(t), Y_n(t),X(t),t). \end{aligned}$$

Thus, we must have

$$\begin{aligned} F(\Psi (t), D(t), P_c^*(t), P_c(t), P_n(t), X(t),t) \equiv \frac{1}{\Psi } H(D(t), Y_c(t), Y_n(t), X(t),t). \end{aligned}$$

Therefore,

$$\begin{aligned} F_{\Psi }= & {} - \frac{1}{\Psi ^2}H + \frac{1}{\Psi }H_{Y_c}P_c^* + \frac{1}{\Psi } H_{Y_n}\frac{P_c^*P_n}{P_c}\\ F_{P_c^*}= & {} H_{Y_c} + H_{Y_n}\frac{P_n}{P_c}\\ F_{P_c}= & {} - H_{Y_n}\frac{P_c^*P_n}{P_c^2}\\ F_{P_n}= & {} H_{Y_n}\frac{P_c^*}{P_c}. \end{aligned}$$

Thus,

$$\begin{aligned} F_{\Psi }\Psi = - F + F_{P_c^*}P_c^* \end{aligned}$$

and

$$\begin{aligned} P_c F_{P_c} + P_n F_{P_n} = 0. \end{aligned}$$

Therefore, (34) becomes

$$\begin{aligned} W(t) \alpha _A^{\top } \sigma _A = -F_{\Psi } \Psi \nu ^{\top } + \left( F+ F_{\Psi } \Psi \right) \sigma _{p_c^*}^{\top } + F_D\sigma _{D}^{\top } + F_{P_n} P_n(t) \left( \sigma _{p_n}^{\top } - \sigma _{p_c}^{\top }\right) + F_X^{\top }\sigma _X. \end{aligned}$$
(35)

Thus, we have Eq. (23).

To prove Part (iii), let \(\bar{Y}_c^l(t) := e^{D(t)} Y_c^l(t)\) and \(\bar{Y}_n^l(t) := e^{D(t)} Y_n^l(t)\). When volatilities, drifts and jump rates of traded and nontraded prices, exchange rates and asset prices are all constant over time, \((\bar{Y}_c^l,\bar{Y}_n^l)\) are Markov. Thus since \(G_c\) and \(G_n\) are functions of \((\bar{Y}_c^l,\bar{Y}_n^l)\), F can be rewritten as follows:

$$\begin{aligned}&e^{-rt}F(\Psi (t), D(t), P_c^*(t), P_c(t), P_n(t),t) \\&\quad = e^{-rt}\frac{1}{\Psi (t)} E \left[ \left. \int _t^T \left\{ \bar{Y}_c(s) G_c + \bar{Y}_n(s) G_n \right\} \, ds \, \right| \, \bar{Y}_c(t), \bar{Y}_n(t) \right] \end{aligned}$$

Define

$$\begin{aligned} \bar{H}(\bar{Y}_c^l(t), \bar{Y}_n^l(t),t) := E \left[ \left. \int _t^T \left\{ \bar{Y}_c^l(s) G_c + \bar{Y}_n^l(s) G_n \right\} \, ds \, \right| \, \bar{Y}_c^l(t), \bar{Y}_n^l(t) \right] . \end{aligned}$$

Then we must have

$$\begin{aligned} F(\Psi (t), D(t), P_c(t), P_n(t),t) \equiv \frac{1}{\Psi (t)} \bar{H}(\bar{Y}_c(t), \bar{Y}_n(t),t). \end{aligned}$$

Therefore,

$$\begin{aligned} F_{\Psi }= & {} - \frac{1}{\Psi ^2} \bar{H} + \frac{1}{\Psi }\bar{H}_{\bar{Y}_c}e^DP_c^* + \frac{1}{\Psi } \bar{H}_{\bar{Y}_n}\frac{e^DP_c^*P_n}{P_c}\\ F_{P_c^*}= & {} \bar{H}_{\bar{Y}_c}e^D + \bar{H}_{Y_n}\frac{e^DP_n}{P_c}\\ F_{D}= & {} \bar{H}_{\bar{Y}_c}e^DP_c^* + \bar{H}_{Y_n}\frac{e^DP_c^*P_n}{P_c} = P_c^* F_{P_c^*}\\ F_{P_c}= & {} - \bar{H}_{Y_n}\frac{e^DP_c^*P_n}{P_c^2}\\ F_{P_n}= & {} \bar{H}_{Y_n}\frac{e^DP_c^*}{P_c}. \end{aligned}$$

Thus,

$$\begin{aligned} F_{\Psi }\Psi= & {} - F + F_{P_c^*}P_c^*\\ 0= & {} P_c F_{P_c} + P_n F_{P_n}\\ F_{D}= & {} F_{P_c^*}P_c^*, \end{aligned}$$

and (34) becomes

$$\begin{aligned} W(t) \alpha _A^{\top } \sigma _A = -F_{\Psi } \Psi \nu ^{\top } + (F + F_{\Psi } \Psi ) (\sigma _{p_c^*}^{\top } + \sigma _{D}^{\top }) + F_{P_n} P_n(t)( \sigma _{p_n}^{\top } - \sigma _{p_c}^{\top }). \end{aligned}$$

Therefore, we have Eq. (24).

1.2 Proof of Proposition 1

Recall

$$\begin{aligned} C_{Rc}(t) = \frac{C_c(t)}{e^{D(t)}P_c^*(t)}, \quad \text{ and } \quad C_{Rn}(t) =\frac{C_n(t)}{e^{D(t)}(P_c^*(t)/P_c(t))P_n(t)}. \end{aligned}$$

Let \(\bar{Y}_c(t) = e^{D(t)}P_c^*(t)\Psi (t)\) and \(\bar{Y}_n(t) = e^{D(t)}(P_c^*(t)/P_c(t))P_n(t)\Psi (t)\), as defined in the proof of Part (ii) of Theorem 1. Then the FOCs are

$$\begin{aligned}&\kappa a_c \left( C_{Rc} \right) ^{a_c-1}\left( C_{Rn} \right) ^{a_n} = \bar{Y}_c,\\&\kappa a_n \left( C_{Rc} \right) ^{a_c}\left( C_{Rn} \right) ^{a_n-1} = \bar{Y}_n. \end{aligned}$$

Thus the above two imply that

$$\begin{aligned} C_{Rc} = \left( \frac{a_c}{a_n}\right) C_{Rn}\frac{\bar{Y}_n}{\bar{Y}_c}. \end{aligned}$$

By substituting the above back into the FOCs, we have

$$\begin{aligned} C_{Rc}= & {} \left( \kappa a_c\right) ^{\frac{1}{1-a}} \left( \frac{a_n}{a_c}\right) ^{\frac{a_n}{1-a}} \bar{Y}_c^{\frac{a_n-1}{1-a}} \bar{Y}_n^{\frac{-a_n}{1-a}}, \\ C_{Rn}= & {} \left( \kappa a_n\right) ^{\frac{1}{1-a}} \left( \frac{a_c}{a_n}\right) ^{\frac{a_c}{1-a}} \bar{Y}_c^{\frac{-a_c}{1-a}} \bar{Y}_n^{\frac{a_c -1}{1-a}}. \end{aligned}$$

Note that both \(C_{Rc}\) and \(C_{Rn}\) are lognormally distributed with jumps because \(P_c^*\), \(P_c^l\), and \(P_n^l\) are lognormally distributed, and \(\Psi \) and \(e^D\) are lognormally distributed with jumps.Footnote 16 Define \(\eta _c(t) = \bar{Y}_c(t)C_{Rc}(t)\) and \(\eta _n(t) = \bar{Y}_n(t)C_{Rn}(t)\). Then

$$\begin{aligned} \eta _c(t)= & {} \left( \kappa a_c\right) ^{\frac{1}{1-a}} \left( \frac{a_n}{a_c}\right) ^{\frac{a_n}{1-a}} \left( \bar{Y}_c(t)\right) ^{\frac{- a_c}{1-a}} \left( \bar{Y}_n(t)\right) ^{\frac{-a_n}{1-a}},\\ \eta _n(t)= & {} \left( \kappa a_n\right) ^{\frac{1}{1-a}} \left( \frac{a_c}{a_n}\right) ^{\frac{a_c}{1-a}} \left( \bar{Y}_c(t)\right) ^{\frac{-a_c}{1-a}} \left( \bar{Y}_n(t)\right) ^{\frac{-a_n}{1-a}}. \end{aligned}$$

Since \(\bar{Y}_c\) and \(\bar{Y}_n\) are lognormally distributed with jumps, so are \(\eta _c\) and \(\eta _n\). Thus dynamics of \(\eta _c(t)\) and \(\eta _n(t)\) can be expressed as in the following forms:

$$\begin{aligned} \frac{d\eta _c(t)}{\eta _c(t-)}= & {} \mu _{\eta c} dt + \sigma _{\eta c}^{\top }dz(t) + \phi _{\eta c}^{\top }dN(t) \\ \frac{d\eta _n(t)}{\eta _n(t-)}= & {} \mu _{\eta n} dt + \sigma _{\eta n}^{\top }dz(t) + \phi _{\eta n}^{\top }dN(t). \end{aligned}$$

where \(\mu \)’s, \(\sigma \)’s and \(\phi \)’s for \(\eta _c\) and \(\eta _n\)are all constant. In fact, since \(\eta _c(t) = (a_c/a_n)\eta _n(t)\), the dynamics of both \(\eta _c\) and \(\eta _n\) are identical to each other except their initial values. That is, \(\mu _{\eta c} = \mu _{\eta n}\), \(\sigma _{\eta c}= \sigma _{\eta n}\) and \(\phi _{\eta c} = \phi _{\eta n}\). Therefore,

$$\begin{aligned} K_c:= & {} E_t\left[ \int _t^T \eta _c(s) ds \right] = E\left[ \left. \int _t^T \eta _c(s) ds \, \right| \, \bar{Y}_c(t), \bar{Y}_n(t) \, \right] \\= & {} \eta _c(t) E_t\left[ \int _t^T \frac{\eta _c(s)}{\eta _c(t)} ds \right] \\= & {} \frac{1}{\mu _{\eta c} + \phi _{\eta c}^{\top }\lambda } \eta _c(t) \left( e^{\left( \mu _{\eta c} + \phi _{\eta c}^{\top }\lambda \right) (T-t)} -1 \right) ,\\ K_n:= & {} E_t\left[ \int _t^T \eta _n(s) ds \right] = \frac{a_n}{a_c}K_c. \end{aligned}$$

If \(\mu _{\eta c}\) is zero, then \(K_c\) and \(K_n\) become the limits of the above quantities as \(\mu _{\eta c}\) approaches zero.

Recall \(F(t,.) = \frac{1}{\Psi (t)}(K_c + K_n)\), i.e., the current level of wealth is the same as the present value of future consumption. Since \(K_c\) and \(K_n\) are positive almost surely for \(t < T\), we have \(F > 0\) almost surely. However,

$$\begin{aligned} (K_c)_{Y_c} = \frac{a_c}{a -1} \frac{1}{\mu _{\eta c} + \phi _{\eta c}^{\top }\lambda } (\kappa a_c)^{\frac{1}{1-a}} \left( \frac{a_c}{a_n} \right) ^{\frac{a_n}{a - 1}} (\bar{Y}_c)^{\frac{1 - a_n}{a -1}} (\bar{Y}_n)^{\frac{a_n}{a -1}} \left( e^{\left( \mu _{\eta c} + \phi _{\eta c}^{\top }\lambda \right) (T-t)} - 1\right) < 0. \end{aligned}$$

Since

$$\begin{aligned} (K_c)_{\bar{Y}_c}= & {} \frac{a_c}{a - 1} \frac{K_c}{\bar{Y}_c}, \qquad (K_n)_{\bar{Y}_c} = \frac{a_n}{a_c} (K_c)_{\bar{Y}_c},\\ (K_c)_{\bar{Y}_n}= & {} \frac{a_n}{a - 1} \frac{K_c}{\bar{Y}_n}, \quad \text{ and } \quad (K_n)_{\bar{Y}_n} = \frac{a_n}{a_c} (K_c)_{\bar{Y}_n}, \end{aligned}$$

we have \((K_n)_{\bar{Y}_c}, \, (K_c)_{\bar{Y}_n}, \, (K_n)_{\bar{Y}_n} \, < 0\). Also since \(F = \frac{1}{\Psi }(K_c + K_n) = \frac{1}{\Psi } K_c \frac{a}{a_c}\),

$$\begin{aligned}&\frac{F_{P_n}P_n}{F} = \frac{P_n}{F} \frac{1}{\Psi } \frac{a}{a_c}(K_c)_{\bar{Y}_n}\frac{\partial \bar{Y}_n}{\partial P_n} = - \frac{a_n}{1 - a } < 0\\&\frac{F_{P_c}P_c}{F} = \frac{P_c}{F} \frac{1}{\Psi } \frac{a}{a_c}(K_c)_{\bar{Y}_n}\frac{\partial \bar{Y}_n}{\partial P_c} = \frac{a_n}{1 - a} > 0 \\&\frac{F_{P_c^*}P_c^*}{F} = \frac{P_c^*}{F} \frac{1}{\Psi } \frac{a}{a_c}\left( (K_c)_{\bar{Y}_c}\frac{\partial \bar{Y}_c}{\partial P_c^*} + (K_c)_{\bar{Y}_n}\frac{\partial \bar{Y}_n}{\partial P_c^*} \right) = - \frac{a}{1 - a} < 0 \\&\gamma = - \frac{\Psi F_{\Psi }}{F} = - \frac{\Psi }{F} \frac{a}{a_c} \left\{ - \frac{1}{\Psi ^2} K_c + \frac{1}{\Psi } \left( (K_c)_{\bar{Y}_c}\frac{\partial \bar{Y}_c}{\partial \Psi } + (K_c)_{\bar{Y}_n}\frac{\partial \bar{Y}_n}{\partial \Psi } \right) \right\} = \frac{1}{1 - a} > 1 \\&\frac{F_D}{F} = \frac{1}{\Psi F}\frac{a}{a_c} \left( (K_c)_{\bar{Y}_c}\frac{\partial \bar{Y}_c}{\partial D} + (K_c)_{\bar{Y}_n}\frac{\partial \bar{Y}_n}{\partial D} \right) = - \frac{a}{1-a} < 0. \end{aligned}$$

To compute \(\Delta F/F\), recall \(\bar{Y}_n = \bar{Y}_c\left( \frac{P_n}{P_c}\right) \). Thus,

$$\begin{aligned} F= & {} \frac{1}{\Psi } \frac{a}{a_c} \frac{ e^{\left( \mu _{\eta c} + \phi _{\eta c}^{\top }\lambda \right) (T-t)} - 1}{\mu _{\eta c} + \phi _{\eta c}^{\top }\lambda } \eta _c(t) \\= & {} \frac{1}{\Psi } \frac{a}{a_c} \frac{ e^{\left( \mu _{\eta c} + \phi _{\eta c}^{\top }\lambda \right) (T-t)} -1 }{\mu _{\eta c} + \phi _{\eta c}^{\top }\lambda } \left( \kappa a_c\right) ^{\frac{1}{1-a}} \left( \frac{a_n}{a_c}\right) ^{\frac{a_n}{1-a}} \left( \bar{Y}_c(t)\right) ^{\frac{- a}{1-a}} \left( \frac{P_n}{P_c}\right) ^{\frac{-a_n}{1-a}}. \end{aligned}$$

However, since

$$\begin{aligned}&\frac{1}{\Psi } \bar{Y}_c^{-\frac{a}{1-a}} = \frac{1}{\Psi } \left( e^D P_c^* \Psi \right) ^{-\frac{a}{1-a}} = \Psi ^{-\frac{1}{1-a}} \left( e^D P_c^* \right) ^{-\frac{a}{1-a}},\\&F = \frac{a}{a_c} \frac{ e^{\left( \mu _{\eta c} + \phi _{\eta c}^{\top }\lambda \right) (T-t)} -1 }{\mu _{\eta c} + \phi _{\eta c}^{\top }\lambda } \left( \kappa a_c\right) ^{\frac{1}{1-a}} \left( \frac{a_n}{a_c}\right) ^{\frac{a_n}{1-a}} \left( \frac{P_n}{P_c}\right) ^{\frac{-a_n}{1-a}} \Psi ^{-\frac{1}{1-a}} \left( e^D P_c^* \right) ^{-\frac{a}{1-a}}. \end{aligned}$$

Therefore,

$$\begin{aligned} \Delta F_l(t)= & {} F_l(t) - F_l(t-) = F\left\{ e^{-\frac{a}{1-a}\phi _{D^l}}\left( \frac{\theta ^l}{\lambda ^l} \right) ^{-\frac{1}{1-a}} -1 \right\} ,\\ \Delta F_k(t)= & {} F_k(t) - F_k(t-) = F\left\{ \left( \frac{\theta ^k}{\lambda ^k} \right) ^{-\frac{1}{1-a}} -1 \right\} , \quad \text{ for } k \ne l. \end{aligned}$$

Next, to find the value function, note that

$$\begin{aligned} U(.,t) = \kappa \left( \frac{a_n}{a_c} \right) ^{a_n}\left( \frac{P_c(t)}{P_n(t)}\right) ^{a_n} C_{Rc}^a(t). \end{aligned}$$

Thus, optimal U is lognormally distributed with jumps. Let \(\mu _v\) and \(\phi _v\) be the drift rate and the L-vector of jump rates for the dynamics of the optimal U(., t). Then, since \(\mu _v\) and \(\phi _v\) are constant over time, the value function V is

$$\begin{aligned} V(t) = E\left[ \left. \int _t^T U(.,s) ds \right| U(.,t) \right] = \frac{1}{\mu _v + \phi _v^{\top }\lambda } U(.,t) \left( e^{\left( \mu _v + \phi _v^{\top }\lambda \right) (T-t)}- 1\right) . \end{aligned}$$

Therefore, by substitutions, the value function is computed to be (27). The above value function is well defined for \(\mu _v + \phi _v^{\top }\lambda \ne 0\). If \(\mu _v + \phi _v^{\top }\lambda = 0\), then the value function can be computed as the limit of the above quantity as \(\mu _v + \phi _v^{\top }\lambda \) approaches zero. This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, J. Jump-diffusion international asset allocation. Math Finan Econ 10, 295–319 (2016). https://doi.org/10.1007/s11579-015-0160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-015-0160-6

Keywords

JEL Classification

Navigation