Skip to main content
Log in

Acceptability indexes via \(g\)-expectations: an application to liquidity risk

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

Recently, several authors focused their attention on acceptability indexes (AI) and their applications in Finance. The AI notion turns out to be quite flexible and several applications in different directions have been proposed. In particular, in Cherny and Madan (Int J Theor Appl Finance 13(8):1149–1177, 2010) illiquid markets are modeled via AI and bid and ask prices are described through a “Conic Finance” approach. A different approach of dynamic type to bid and ask prices has been suggested by Bion-Nadal (J Math Econ 45(11):738–750, 2009), taking into account both transaction costs and liquidity risk, and based on time consistent pricing procedures. The purpose of the present paper is to suggest a further link between AI and risk measures based on the notion of \(g\)-expectation, and by this powerful tool to fill the gap between the static description of liquidity introduced by Corcuera et al. (Int J Portfolio Anal Manag 1(1):80–91, 2012) and the dynamic description provided by Bion-Nadal (J Math Econ 45(11):738–750, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acerbi, C., Scandolo, G.: Liquidity risk theory and coherent risk measures. Quant. Finance 8(7), 681–692 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrieu, P., El Karoui, N.: Pricing, hedging and optimally designing derivatives via minimization of risk measures. In: Carmona, R. (ed.) Indifference Pricing: Theory and Applications, pp. 77–144. Princeton University Press, Princeton (2005)

    Google Scholar 

  4. Bielecki, T.R., Cialenco, I., Zhang, Z.: Dynamic coherent acceptability indices and their applications to finance. Math. Finance. doi:10.1111/j.1467-9965.2012.00524.x

  5. Bion-Nadal, J.: Time consistent dynamic risk processes. Stoch. Process. Appl. 119(2), 633–654 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bion-Nadal, J.: Bid-ask dynamic pricing in financial markets with transaction costs and liquidity risk. J. Math. Econ. 45(11), 738–750 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Briand, P., Coquet, F., Hu, Y., Mémin, J., Peng, S.: A converse comparison theorem for BSDEs and related properties of \(g\)-expectation. Electron. Commun. Probab. 5, 101–117 (2000)

    Article  MATH  Google Scholar 

  8. Carr, P., Geman, H., Madan, D.B.: Pricing and hedging in incomplete markets. J. Financial Econ. 62, 131–167 (2001)

    Article  Google Scholar 

  9. Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Montrucchio, L.: Risk measures: rationality and diversification. Math. Finance 21(4), 743–774 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Chen, Z., Peng, S.: A general downcrossing inequality for \(g\)-martingales. Stat. Probab. Lett. 46, 169–175 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Z., Sulem, A.: An integral representation theorem of \(g\)-expectations. Risk Decis. Anal. 2(4), 245–255 (2011)

    Google Scholar 

  12. Cherny, A., Madan, D.B.: New measures for performance evaluation. Rev. Financial Stud. 22(7), 2571–2606 (2009)

    Google Scholar 

  13. Cherny, A., Madan, D.B.: Markets as a counterparty: an introduction to conic finance. Int. J. Theor. Appl. Finance 13(8), 1149–1177 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Corcuera, J.M., Guillaume, F., Madan, D.B., Schoutens, W.: Implied liquidity. Towards stochastic liquidity modeling and liquidity trading. Int. J. Portfolio Anal. Manag. 1(1), 80–91 (2012)

    Article  Google Scholar 

  15. Delbaen, F.: Coherent risk measures on general probability spaces. In: Sandmann, K., Schönbucher, P. (eds.) Advances in Finance and Stochastics: Essays in Honor of Dieter Sondermann, pp. 1–37. Springer, Berlin (2002)

  16. Delbaen, F.: The structure of m-stable sets and in particular of the set of risk neutral measures. In: Séminaire de Probabilités, In Memoriam Paul-André Meyer. Lecture Notes in Mathematics, vol. 1874, pp. 215–258. Springer, Berlin (2006)

  17. Drapeau, S., Kupper, M.: Risk preferences and their robust representation. Preprint (2010)

  18. El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Finance 7(1), 1–71 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Föllmer, H., Penner, I.: Convex risk measures and the dynamics of their penalty functions. Stat. Decis. 24, 61–96 (2006)

    Article  MATH  Google Scholar 

  20. Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance Stoch. 6(4), 429–447 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Frittelli, M.: Introduction to a theory of value coherent to the no arbitrage principle. Finance Stoch. 4(3), 275–297 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Frittelli, M., Maggis, M.: Dual representation of quasi-convex conditional maps. SIAM J. Financial Math. 2, 357–382 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Frittelli, M., Maggis, M.: Complete duality for quasiconvex dynamic risk measures on modules of the \(L^{p}\)-type. Preprint (2011)

  24. Frittelli, M., Rosazza Gianin, E.: Putting order in risk measures. J. Banking Finance 26, 1473–1486 (2002)

    Article  Google Scholar 

  25. Jouini, E.: Price functionals with bid-ask spreads: an axiomatic approach. J. Math. Econ. 34, 547–558 (1995)

    Article  MathSciNet  Google Scholar 

  26. Jouini, E., Kallal, H.: Martingales and arbitrage in securities markets with transaction costs. J. Econ. Theory 66, 178–197 (2000)

    Article  MathSciNet  Google Scholar 

  27. Kupper, M., Schachermayer, W.: Representation results for law invariant time consistent functions. Math. Financial Econ. 2(3), 189–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14, 55–61 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Peng, S.: Backward SDE and related g-expectations. In: El Karoui, N., Mazliak, L. (eds.) Backward Stochastic Differential Equations, Pitman Research Notes in Mathematics Series, vol. 364, pp. 141–159. Longman, Harlow (1997)

    Google Scholar 

  30. Peri, I.: Quasi-convex risk measures and acceptability indices. Theory and applications. Ph.D. Thesis, University of Milano-Bicocca, Milan (2012)

  31. Rosazza Gianin, E.: Risk measures via g-expectations. Insur. Math. Econ. 39, 19–34 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Both authors thank two anonymous referees for their useful remarks. They thank moreover the graduate student Alessandro Daniele Corti for his kind support in processing the data in order to provide the graphical illustration of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Sgarra.

Appendix: Proof of Proposition 3

Appendix: Proof of Proposition 3

Proof of Proposition 3

(i) \(\Rightarrow \) (ii): For any \(x>0\) and \( m\in \mathbb R \), set

$$\begin{aligned} \mathcal A _{x}^{m}\triangleq \{Y\in L^{\infty }:\alpha \left( m+Y\right) \ge x\}. \end{aligned}$$

Hence, \(\mathcal A _{x}\equiv \mathcal A _{x}^{0}\). Obviously, \(\alpha \left( X\right) =\sup \{x>0:X\in \mathcal A _{x}\}\).

Fix now an arbitrary \(x>0\). For any \(m\in \mathbb R \), the set \(\mathcal A _{x}^{m}\) satisfies the following properties.

Monotonicity of \(\mathcal A _{x}^{m}\). By monotonicity of \(\alpha \) , it is easy to check that: (a) if \(Y\in \mathcal A _{x}^{m}\) and \(m^{\prime }\ge m\), then also \(Y\in \mathcal A _{x}^{m^{\prime }}\); (b) if \(Y\in \mathcal A _{x}^{m}\) and \(Y^{\prime }\ge Y\), then also \(Y^{\prime }\in \mathcal A _{x}^{m}\).

Convexity of \(\mathcal A _{x}^{m}\). By quasi-concavity of \(\alpha \) : if \(Y_{1}\) and \(Y_{2}\) belong to \(\mathcal A _{x}^{m}\) (i.e. \(\alpha \left( m+Y_{1}\right) \ge x\) and \(\alpha \left( m+Y_{2}\right) \ge x\)), then \(\alpha \left( m+aY_{1}+\left( 1-a\right) Y_{2}\right) =\alpha \left( a\left( m+Y_{1}\right) +\left( 1-a\right) \left( m+Y_{2}\right) \right) \ge x\) for any \(a\in \left( 0,1\right) \). Hence, also \(aY_{1}+\left( 1-a\right) Y_{2}\in \mathcal A _{x}^{m}\) and convexity of any \(\mathcal A _{x}^{m}\) follows.

\(\lambda \mathcal A _{x}^{m}+\left( 1-\lambda \right) \mathcal A _{x}^{m^{\prime }}\subseteq \mathcal A _{x}^{\lambda m+\left( 1-\lambda \right) m^{\prime }}\) for any \(m,m^{\prime }\in \mathbb R \) and \(\lambda \in \left( 0,1\right) \). Take indeed any \(Y\in \mathcal A _{x}^{m}\) and \( Y^{\prime }\in \mathcal A _{x}^{m^{\prime }}\). By quasi-concavity of \(\alpha \) it follows that \(\alpha \left( \lambda m+\left( 1-\lambda \right) m^{\prime }+\lambda Y \right.\left.+\left( 1-\lambda \right) Y^{\prime }\right) =\alpha \left( \lambda \left( m+Y\right) +\left( 1-\lambda \right) \left( m^{\prime }+Y^{\prime }\right) \right) \ge x\), hence the thesis.

Right-continuity, i.e. \(\mathcal A _{x}^{m}=\bigcap _{n>m}\mathcal A _{x}^{n}\). On one hand, \(\mathcal A _{x}^{n}\supseteq \mathcal A _{x}^{m}\) for \(n>m\) (by monotonicity of \(\mathcal A _{x}^{m}\)), so \(\bigcap _{n>m} \mathcal A _{x}^{n}\supseteq \mathcal A _{x}^{m}\). On the other hand, for any \(Y\in \bigcap _{n>m}\mathcal A _{x}^{n}\) it holds \(\alpha \left( n+Y\right) \ge x\) for any \(n>m\). By (CFA) of \(\alpha \), it follows \(\alpha \left( m+Y\right) =\inf _{n>m}\alpha \left( n+Y\right) \ge x\). Hence, \(Y\in \mathcal A _{x}^{m}\) and so \(\bigcap _{n>m}\mathcal A _{x}^{n}\subseteq \mathcal A _{x}^{m}\).

By Theorem 1.8 and Proposition 1.14 of Drapeau and Kupper [17] (or Proposition 4 of Föllmer and Schied [20]),

$$\begin{aligned} \rho _{x}^\mathcal{A }\left( X\right) \triangleq \inf \{m\in \mathbb R :X\in \mathcal A _{x}^{m}\}=\inf \{m\in \mathbb R :\alpha \left( m+X\right) \ge x\} \end{aligned}$$
(16)

is a convex and monotone risk measure with \(\mathcal A _{\rho _\mathcal{A }}\equiv \mathcal A \). Hence

$$\begin{aligned} \alpha \left( X\right) =\inf \{x>0:X\in \mathcal A _{x}\}=\inf \{x>0:\rho _{x}\left( X\right) \le 0\}. \end{aligned}$$

It is straightforward to check that \(\rho _{x}:L^{\infty }\rightarrow \mathbb R \) and that \(\rho _{x}\) is increasing in \(x>0\).

Continuity from above of \(\rho _{x}\) . Take an arbitrary sequence \(\left( X_{n}\right) _{n\in \mathbb N }\subseteq L^{\infty }\) such that \(X_{n}\searrow X\). Then \(\rho _{x}\left( X_{n}\right) \) is increasing in \(n\) and

$$\begin{aligned} \sup _{n\in \mathbb N }\rho _{x}\left( X_{n}\right)&= \sup _{n\in \mathbb N }\inf \{m\in \mathbb R :\alpha \left( m+X_{n}\right) \ge x\} \\&= \inf \{m\in \mathbb R :\alpha \left( m+X\right) \ge x\}=\rho _{x}\left( X\right), \end{aligned}$$

since, by continuity from above of \(\alpha ,\, \inf \{m\in \mathbb R :\alpha (m+X_{n})\ge x\}\nearrow _{n}\inf \{m\in \mathbb R :\alpha \left( m+X\right) \ge x\}\). Continuity from above of \(\rho _{x}\) is therefore proved.

By (WEC) of \(\alpha \), one deduces that for any \(c\in \mathbb R \)

$$\begin{aligned} \rho _{x}\left( c\right) =\inf \{m\in \mathbb R :\alpha \left( m+c\right) \ge x\}=-c, \end{aligned}$$

because \(\alpha \left( m+c\right) =0\) for any \(m<-c\), while \(\alpha \left( m+c\right) =+\infty \) otherwise.

(ii) \(\Longleftrightarrow \) (iii): Since \(\rho _{x}\) is a convex, monotone and continuous from above risk measure with \(\rho _{x}\left( 0\right) =0\), by Föllmer and Schied [20] and Frittelli and Rosazza Gianin [24] \(\rho _{x}\) can be represented as

$$\begin{aligned} \rho _{x}\left( X\right) =\sup _{Q\in \mathcal P }\left\{ E_{Q}\left[ -X \right] -F_{x}\left( Q\right) \right\} , \end{aligned}$$

where

$$\begin{aligned} F_{x}\left( Q\right) \triangleq \sup _{Z\in L^{\infty }}\left\{ E_{Q}\left[ Z \right] -\rho _{x}\left( -Z\right) \right\} . \end{aligned}$$

Furthermore, \(F_{x}\left( Q\right) \) is decreasing in \(x\) (since \(\rho _{x}\) is increasing in \(x\)).

By (16) and monotonicity of \(\alpha \),

$$\begin{aligned} \alpha \left( X\right) \ge x \quad \Longleftrightarrow \quad \rho _{x}\left( X\right) \le 0\quad \Longleftrightarrow \quad E_{Q}\left[ -X \right] -F_{x}\left( Q\right) \le 0 \text{ for} \text{ any} Q\in \mathcal P . \end{aligned}$$

As a consequence, \(\alpha \left( X\right) =\sup \left\{ x>0:\alpha \left( X\right) \ge x\right\} =\sup \left\{ x>0:\rho _{x}\left( X\right) \le 0\right\} \).

(ii) \(\Rightarrow \) (i): By (2), it is clear that \(\alpha \left( X\right) \in \left[ 0,+\infty \right] \) for any \(X\in L^{\infty }\). Moreover, by definition of \(\alpha \) and by monotonicity of \(\rho _{x}\) in \(x\):

$$\begin{aligned} \rho _{x}\left( X\right) \le 0 \quad \Longleftrightarrow \quad \alpha \left( X\right) \ge x. \end{aligned}$$
(17)

Weak expectation consistency of \(\alpha \) . Since \(\rho _{x}(c)=-c\) for any \(c\in \mathbb R \) and \(\sup \emptyset =0\) by convention, for any \(c<0\) it follows \(\alpha (c)=\sup \{x>0:\rho _{x}(c)\le 0\}=\sup \emptyset =0\) while \(\alpha \left( 0\right) =\sup \left\{ x>0:\rho _{x}\left( 0\right) \le 0\right\} =+\infty \).

Monotonicity and Quasi-convexity of \(\alpha \) follow easily from monotonicity and convexity of \(\rho _{x}\).

For completeness, we will show quasi-convexity of \(\alpha \). Suppose that \(\alpha \left( X\right) \ge x \) and \(\alpha \left( Y\right) \ge x\) (hence \(X,Y\in \mathcal A _{x}\)) for \(x>0\). This is equivalent to \(\rho _{x}\left( X\right) \le 0\) and \(\rho _{x}\left( Y\right) \le 0\). By convexity of any \(\rho _{x}\), it follows that \(\rho _{x}\left( aX+\left( 1-a\right) Y\right) \le 0\) for any \(a\in \left[ 0,1\right] \), hence \(\alpha \left( aX+\left( 1-a\right) Y\right) \ge x\).

Continuity from above of \(\alpha \) . Take an arbitrary sequence \(\left( X_{n}\right) _{n\in \mathbb N }\subseteq L^{\infty }\) such that \(X_{n}\searrow ~X\). Since \(\alpha \left( X_{n}\right) \ge x\) (with \(x>0\) ) if and only if \(\rho _{x}\left( X_{n}\right) \le 0\) and \(\rho _{x}\left( X_{n}\right) \nearrow _{n}\rho _{x}\left( X\right) \) (by (CFA) of \(\rho _{x}\) ), it follows that \(\alpha \left( X\right) \ge x\). For \(x=0\), it is trivial to check that \(\alpha \left( X_{n}\right) \ge 0\) implies \(\alpha \left( X\right) \ge 0\). So, \(\alpha (X_n)\ge y\) implies \(\alpha (X)\ge y\) for any \(y\ge 0\).

Take now \(\tilde{x}=\inf _{n}\alpha \left( X_{n}\right) \ge 0\). On one hand, \(\alpha (X_{n})\ge \tilde{x}\), so also \(\alpha (X)\ge \tilde{x}\). On the other hand, \(\alpha \left( X_{n}\right) \ge \alpha \left( X\right) \) (by (MON) of \(\alpha \)), hence \(\alpha \left( X\right) \le \inf _{n}\alpha \left( X_{n}\right) =\tilde{x}\). So, \(\alpha \left( X\right) =\inf _{n}\alpha \left( X_{n}\right) \).

Finally, the former equality in (4) follows immediately by

$$\begin{aligned} F_x(Q)=\sup _{Z \in L^{\infty }} \{E_Q [-Z] -\rho _x(Z) \}= \sup _{Z \in L^{\infty }: \rho _x(Z) \le 0} E_Q [-Z] \end{aligned}$$

(see Föllmer and Schied [20]), while the latter is due to (17).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosazza Gianin, E., Sgarra, C. Acceptability indexes via \(g\)-expectations: an application to liquidity risk. Math Finan Econ 7, 457–475 (2013). https://doi.org/10.1007/s11579-013-0097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-013-0097-6

Keywords

JEL Classification

Navigation