Skip to main content

Advertisement

Log in

Impacts of self-generation and self-consumption on German household electricity prices

  • Original Paper
  • Published:
Journal of Business Economics Aims and scope Submit manuscript

Abstract

In recent years, more than half of the household PV systems in Germany were installed with battery storage systems to self-consume a higher share of the electricity produced. This development will have a large impact on the share of energy purchased from the electricity grid and this, in turn, will affect the distribution of the cost components of the household electricity price. This contribution therefore analyzes the impacts of increasing self-generation and self-consumption on the electricity price components. To obtain the nation-wide self-consumption potential, the results of a techno-economic optimization model on household system level are scaled up to all (semi-) detached houses in Germany. The additional PV feed-in remuneration and lacking contributions to the different taxes and levies are reallocated to the (remaining) electricity consumption from the grid. Changes in the regulatory framework, such as the abolishment of feed-in tariffs, a self-consumption charge, and different allocation schemes for the grid charges, are examined. The results indicate that under the current regulatory framework conditions, less than one third of the potential electricity price increase stems from self-consumption, while remuneration through feed-in tariffs has a much higher impact. Furthermore, the effects of self-consumption on the electricity price seem to be higher with capacity-based grid charges, because the contributions of PV storage owners to the grid charges are reduced through peak shaving with battery storage systems. Our findings also show that policy makers can strongly influence PV feed-in and self-consumption levels, as well as the resulting electricity price.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In this paper cents (or ct) refers to euro cents.

  2. An example for these payments are the avoided grid charges, which are included in the grid charge and credited to the renewable energy levy account.

  3. In Germany, most taxes and levies are lower for commercial/industrial electricity consumers. A weighted consumption is calculated using the consumption quantity and percentage of charges that applies to each consumption group. Hence, we calculate the total consumption equivalent to which the total value of charges applies.

References

  • Bardt H, Chrischilles E, Growitsch C, Hagspiel S, Schaupp L (2014) Eigenerzeugung und Selbstverbrauch von Strom: Stand, Potentiale und Trends. Zeitschrift für Energiewirtschaft 38:83–99. https://doi.org/10.1007/s12398-014-0133-0

    Article  Google Scholar 

  • BDEW (2016) BDEW-Strompreisanalyse Mai 2016: Haushalte und Industrie

  • BDEW (2017) Stromverbrauch in Deutschland nach Verbrauchergruppen 2016: Industrie nutzt die Hälfte des Stroms

  • BMU (2016) Climate Action Plan 2050: principles and goals of the German government’s climate policy

  • BNetzA (2015) Bericht Netzentgeltsystematik Elektrizität

  • BNetzA (2016) Monitoringbericht 2016

  • Davies LL (2016) Making sense of the rapidly evolving legal landscape of solar energy support regimes. KLRI J Law Legis 6:81–142

    Google Scholar 

  • Dehler J, Keles D, Telsnig T, Fleischer B, Baumann M, Fraboulet D, Faure A, Fichtner W (2015) Self-consumption of electricity from renewable sources. INSIGHT_E—an energy think tank informing the European Commission

  • Destatis (2017) Mikrozensus: Haushalte und Familien 2016, Wiesbaden

  • Deutsch M, Graichen P (2015) Was wäre, wenn… ein flächendeckender Rollout von Solar-Speicher-Systemen stattfände?: Eine erste Abschätzung für das Stromsystem und die Energiepolitik

  • Dietrich A, Weber C (2018) What drives profitability of grid-connected residential PV storage systems? A closer look with focus on Germany. Energy Econ 74:399–416. https://doi.org/10.1016/j.eneco.2018.06.014

    Article  Google Scholar 

  • Fett D, Neu M, Keles D, Fichtner W (2018) Self-consumption potentials of existing PV systems in German households. In: Proceedings of the 15th international conference on the European Energy Market

  • Figgener J, Haberschusz D, Kairies K-P, Wessels O, Tepe B, Ebbert M, Herzog R, Sauer DU (2017) Wissenschaftliches Mess- und Evaluierungsprogramm Solarstromspeicher 2.0: Jahresbericht 2017

  • Flaute M, Großmann A, Lutz C (2016) Gesamtwirtschaftliche Effekte von Prosumer-Haushalten in Deutschland. GWS Discussion Paper

  • Freericks C, Fiedler S (2017) Ausnahmeregelungen für die Industrie bei Energie- und Strompreisen: Überblick über die geltenden Regelungen und finanzielles Volumen 2005–2016

  • Friedrichsen N, Hilpert J, Klobasa M, Marwitz S, Sailer F (2016) Anforderungen der Integration der erneuerbaren Energien an die Netzentgeltregulierung: Vorschläge zur Weiterentwicklung des Netzentgeltsystems. Clim Change 34/2016:1–202

    Google Scholar 

  • Gerblinger A, Finkel M, Witzmann R (2014) Ist die Debatte um die Entsolidarisierung obsolet? Energiewirtschaftliche Tagesfragen 64:28–30

    Google Scholar 

  • German Government (2013) Deutschlands Zukunft gestalten: Koalitionsvertrag zwischen CDU, CSU und SPD. 18. Legislaturperiode

  • German TSOs (2015a) Ermittlung der Offshore-Haftungsumlage (§17f EnWG) in 2016 auf Netzentgelte für Strommengen der Letztverbrauchskategorien A‘, B‘ und C’gem. KWKG 2014

  • German TSOs (2015b) Ermittlung der Umlage nach §19 Absatz 2 StromNEV in 2016 auf Netzentgelte für Strommengen der Endverbrauchskategorien A‘, B‘und C‘

  • German TSOs (2015c) Prognose der EEG-Umlage 2016 nach AusgleichMechV: Prognosekonzept und Berechnung der ÜNB

  • German TSOs (2015d) Ermittlung der indikativen KWKG-Umlage (§ 35 Abs. 9 i.V.m. §§ 26 und 27 KWKG n.F.) in 2016 auf Netzentgelte für Strommengen der Endverbrauchskategorien A‘, B‘und C‘

  • Hildmann M, Ulbig A, Andersson G (2015) Empirical analysis of the merit-order effect and the missing money problem in power markets with high RES shares. IEEE Trans Power Syst 30:1560–1570. https://doi.org/10.1109/TPWRS.2015.2412376

    Article  Google Scholar 

  • Hirschl B (2015) Nutzen der Eigenversorgung durch Solarstromspeicher: Ökonomische, ökologische und soziale Wirkungen. HTW-Symposium Dezentrale Solarstromspeicher für die Energiewende, Berlin

    Google Scholar 

  • Jägemann C, Hagspiel S, Lindenberger D (2013) The economic inefficiency of grid parity: the case of German photovoltaics. EWI working paper

  • Kairies K-P, Haberschusz D, van Ouwerkerk J, Strebel J, Wessels O (2016) Wissenschaftliches Mess– und Evaluierungsprogramm Solarspeicher 2016

  • Kaschub T (2017) Batteriespeicher in Haushalten: unter Berücksichtigung von Photovoltaik, Elektrofahrzeugen und Nachfragesteuerung. Dissertation, KIT

  • Kaschub T, Jochem P, Fichtner W (2016) Solar energy storage in German households: profitability, load changes and flexibility. Energy Policy. https://doi.org/10.1016/j.enpol.2016.09.017

    Article  Google Scholar 

  • Keles D, Bublitz A, Zimmermann F, Genoese M, Fichtner W (2016) Analysis of design options for the electricity market: the German case. Appl Energy 183:884–901. https://doi.org/10.1016/j.apenergy.2016.08.189

    Article  Google Scholar 

  • Krampe L, Peter F (2016) Auswirkungen von Batteriespeichern auf das Stromsystem in Süddeutschland

  • Krampe L, Wünsch M, Koepp M (2016) Eigenversorgung aus Solaranlagen.: Das Potenzial für Photovoltaik-Speicher-Systeme in Ein- und Zweifamilienhäusern, Landwirtschaft sowie im Lebensmittelhandel

  • Maubach K-D (2015) Private Stromproduktion—chance oder Risiko? In: Maubach K-D (ed) Strom 4.0. Springer Fachmedien Wiesbaden, Wiesbaden, pp 115–127

  • May N, Neuhoff K (2016) Eigenversorgung mit Solarstrom: Ein Treiber der Energiewende?. Politik im Fokus, DIW Roundup

    Google Scholar 

  • Moshövel J, Magnor, Dirk, Sauer, Dirk Uwe, Bost M, Gährs S, Hirschl B, Cramer M, Özalay B, Schnettler A (2015) Analyse des wirtschaftlichen, technischen und ökologischen Nutzens von PV-Speichern: Gemeinsamer Ergebnisbericht für das Projekt PV-Nutzen

  • Praetorius B, Lenck T, Büchner J, Lietz F, Nikogosian V, Schober D, Weyer H, Woll O (2017) Neue Preismodelle für Energie: Grundlagen einer Reform der Entgelte, Steuern, Abgaben und Umlagen auf Strom und fossile Energieträger

  • Quaschning V, Tjaden T, Bergner J, Weniger J (2015) Die Bedeutung der Kombination von dezentralen Photovoltaikanlagen mit Batteriespeichern und Elektroautos für die Energiewende

  • Regulatory Assistance Project (2014) Netzentgelte in Deutschland: Herausforderungen und Handlungsoptionen. Studie im Auftrag von Agora Energiewende

  • REN21 (2018) Renewables 2018 Global Status Report, Paris

  • Renewable Energies Agency (2016) Akzeptanz-Umfrage 2016

  • Rickerson W, Couture T, Barbose G, Jacobs D, Parkinson G, Chessin E, Belden A, Wilson H, Barrett H (2014) Residential prosumers-drivers and policy options (re-prosumers). IEA-RETD

  • Speith S (2014) Kapazitätstarife im Verteilnetz: Mengeneffekte des Eigenverbrauchs und Netzkostenverteilung. Energiewirtschaftliche Tagesfragen 64:97–100

    Google Scholar 

  • Staubitz H (2016) The German energy transition: status quo and what lies ahead

  • Stephan A, Battke B, Beuse M, Clausdeinken JH, Schmidt TS (2016) Limiting the public cost of stationary battery deployment by combining applications. Nat Energy 1:160–169. https://doi.org/10.1038/nenergy.2016.79

    Article  Google Scholar 

  • Weniger J, Bergner J, Tjaden T, Quaschning V (2014) Bedeutung von prognosebasierten Betriebsstrategien für die Netzintegration von PV-Speichersystemen

  • Wirth H (2017) Aktuelle Fakten zur Photovoltaik in Deutschland

Download references

Acknowledgements

This paper was written in the context of the research project ENSURE. The ENSURE project is funded by the German Federal Ministry of Education and Research (BMBF) under grant FKZ 03SFK1N0. This publication was written in the context of the Research Training Group ENRES, which is funded by the Ministry of Science, Research and the Arts (MWK) in Baden-Württemberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Fett.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 5, 6 and Fig. 7.

Table 5 Data basis for calculations
Table 6 Changes of the different components of the electricity prices due to self-generation or self-consumption
Fig. 7
figure 7

Yearly electricity consumption and peak load of the empirical household load curves

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fett, D., Keles, D., Kaschub, T. et al. Impacts of self-generation and self-consumption on German household electricity prices. J Bus Econ 89, 867–891 (2019). https://doi.org/10.1007/s11573-019-00936-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11573-019-00936-3

Keywords

JEL Classification

Navigation