Skip to main content

Advertisement

Log in

Impact of an equal pay norm on the optimal design of incentive contracts

  • Original Paper
  • Published:
Journal of Business Economics Aims and scope Submit manuscript

Abstract

Many firms do consider an equal pay norm when designing incentive contracts for their employees. This will affect the insights achieved in literature on incentive provision for multiple agents in a firm. We find that the consideration of an equal pay norm leads to less high-powered incentives and provides a rationale for the application of team-based compensation (TBC). When performance measures are positively correlated TBC can still be preferred over otherwise optimal relative performance evaluation schemes. What is more, the consideration of an equal pay norm makes mutual monitoring and coordination between agents more desirable than individual agent behavior. Finally, an increasing firm size decreases the desirability of individual agent behavior and correspondingly makes TBC even more attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The derivation can be found in Appendix 1.

  2. Appendix 2 provides details on the computation of this expected value.

  3. For the relevant calculations, see Appendix 3.1.

  4. Details on the computation of this result can be found in Appendix 3.2.

  5. For the relevant calculations, see Appendix 4.1.

  6. For the derivation, see Appendix 4.2.

  7. See Appendix 5.1 for the calculations.

  8. See Appendix 5.2 for the calculations.

References

  • Agell J, Lundborg P (1995) Theories of pay and unemployment: survey evidence from Swedish manufacturing firms. Scand J Econ 97:295–307

    Article  Google Scholar 

  • Baker GP, Jensen MC, Murphy KJ (1988) Compensation and incentives: practice vs. theory. J Finance 43:593–616

    Article  Google Scholar 

  • Banerjee S, Sarkar M (2014) Other-regarding principal and moral hazard: the single agent case. Working paper. Jadavpur University, Kolkata

  • Bartling B (2011) Relative performance or team evaluation? Optimal contracts for other-regarding agents. J Econ Behav Organ 79:183–193

    Article  Google Scholar 

  • Bartling B, von Siemens F (2010a) Equal sharing rules in partnerships. J Inst Theor Econ 166:299–320

    Article  Google Scholar 

  • Bartling B, von Siemens F (2010b) The intensity of incentives in firms and markets: moral hazard with envious agents. Labour Econ 17:598–607

    Article  Google Scholar 

  • Blinder AS, Choi D (1990) A shred of evidence on theories of wage stickiness. Q J Econ 105:1003–1015

    Article  Google Scholar 

  • Bolton GE, Ockenfels A (2000) ERC: a theory of equity, reciprocity, and competition. Am Econ Rev 90:166–193

    Article  Google Scholar 

  • Brunner M, Sandner K (2012) Social comparison, group composition, and incentive provision. Int J Game Theory 41:565–602

    Article  Google Scholar 

  • Dixit A (1997) Power of incentives in private versus public organizations. Am Econ Rev 87:378–382

    Google Scholar 

  • Dur R, Tichem J (2015) Altruism and relational incentives in the workplace. J Econ Manag Strategy 24(3):485–500

    Article  Google Scholar 

  • Englmaier F, Leider S (2012) Contractual and organizational structure with reciprocal agents. Am Econ J 4:146–183

    Google Scholar 

  • Englmaier F, Wambach A (2010) Optimal incentive contracts under inequity aversion. Games Econ Behav 69:312–328

    Article  Google Scholar 

  • Fehr E, Schmidt KM (1999) A theory of fairness, competition, and cooperation. Q J Econ 114:817–868

    Article  Google Scholar 

  • Grund C, Sliwka D (2007) Envy and compassion in tournaments. J Econ Manag Strategy 14:187–207

    Article  Google Scholar 

  • Hayward MLA, Hambrick DC (1997) Explaining the premiums paid for large acquisitions: evidence of CEO hubris. Adm Sci Q 42:103–127

    Article  Google Scholar 

  • Holmström B (1979) Moral hazard and observability. Bell J Econ 10:74–91

    Article  Google Scholar 

  • Holmström B (1982) Moral hazard in teams. Bell J Econ 13:324–340

    Article  Google Scholar 

  • Holmström B, Milgrom P (1987) Aggregation and linearity in the provision of intertemporal incentives. Econometrica 55:303–328

    Article  Google Scholar 

  • Holmström B, Milgrom P (1990) Regulating trade among agents. J Inst Theor Econ 146:85–105

    Google Scholar 

  • Holmström B, Milgrom P (1991) Multitask principal-agent analyses: incentive contracts, asset ownership, and job design. J Law Econ Organ 7:24–52

    Article  Google Scholar 

  • Itoh H (1992) Cooperation in hierarchical organizations: an incentive perspective. J Law Econ Organ 8:321–345

    Google Scholar 

  • Itoh H (2004) Moral hazard and other-regarding preferences. Jpn Econ Rev 55:18–45

    Article  Google Scholar 

  • Kilduff GJ, Elfenbein HA, Staw BM (2010) The psychology of rivalry: a relationally dependent analysis of competition. Acad Manag J 53:943–969

    Article  Google Scholar 

  • Koszegi B (2014) Behavioral contract theory. J Econ Lit 52:1075–1118

    Article  Google Scholar 

  • Kragl J, Schmid J (2009) The impact of envy on relational employment contracts. J Econ Behav Organ 72:766–779

    Article  Google Scholar 

  • Kretschmer T, Puranam P (2008) Integration through incentives within differentiated organizations. Organ Sci 19:860–875

    Article  Google Scholar 

  • Lambert RA (2001) Contracting theory and accounting. J Account Econ 32:3–87

    Article  Google Scholar 

  • Mayer B, Pfeiffer T (2004) Prinzipien der Anreizgestaltung bei Risikoaversion und sozialen Präferenzen. Z Betr 74:1047–1075

    Google Scholar 

  • Mirrlees JA (1976) The optimal structure of authority and incentives within an organization. Bell J Econ 7:105–131

    Article  Google Scholar 

  • Neilson WS, Stowe J (2010) Piece rate contracts for other-regarding workers. Econ Inq 48:575–586

    Article  Google Scholar 

  • Prendergast C (1999) The provision of incentives in firms. J Econ Lit 17:7–63

    Article  Google Scholar 

  • Ramakrishnan RTS, Thakor AV (1991) Cooperation versus competition in agency. J Law Econ Organ 7:248–283

    Google Scholar 

  • Rey-Biel P (2008) Inequity aversion and team incentives. Scand J Econ 110:297–320

    Article  Google Scholar 

  • Sandner KJ (2009) Impacts of rivalry on types of compensation—competition vs. co-operation between multiple agents under technological interdependencies. Z Betr 79:427–471

    Article  Google Scholar 

  • Schnedler W, Vadovic R (2011) Legitimacy of control. J Econ Manag Strategy 20:985–1009

    Article  Google Scholar 

  • Siegel PA, Hambrick DC (2005) Pay disparities within top management groups: evidence of harmful effects on performance of high-technology firms. Organ Sci 16:259–274

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Krapp.

Appendices

Appendix 1: On the equivalence of the formulation inspired by Fehr and Schmidt (1999) and (5)

Expanding the formulation inspired by Fehr and Schmidt (1999) yields

$$\begin{aligned} \displaystyle \sum \limits _{i=1}^{n}\sum \limits _{j=1}^{n}\left( {\tilde{w}}_{i}-{\tilde{w}}_{j}\right) ^{2}&=\displaystyle \sum \limits _{i=1}^{n}\sum \limits _{j=1}^{n}\left( {\tilde{w}}_{i}^{2}-2{\tilde{w}}_{i}{\tilde{w}}_{j}+{\tilde{w}}_{j}^{2}\right) \\ &=\displaystyle n\cdot \sum \limits _{i=1}^{n}{\tilde{w}}_{i}^{2}-2\cdot \sum \limits _{i=1}^{n}\sum \limits _{j=1}^{n}{\tilde{w}}_{i}{\tilde{w}}_{j}+n\cdot \sum \limits _{j=1}^{n}{\tilde{w}}_{j}^{2}\\ &=\displaystyle n\cdot \sum \limits _{i=1}^{n}{\tilde{w}}_{i}^{2}-2n\bar{w}\cdot \sum \limits _{i=1}^{n}{\tilde{w}}_{i}+n\cdot \sum \limits _{i=1}^{n}{\tilde{w}}_{i}^{2}\\ &=\displaystyle 2n\cdot \left( \sum \limits _{i=1}^{n}{\tilde{w}}_{i}^{2}-\bar{w}\cdot \sum \limits _{i=1}^{n}{\tilde{w}}_{i}\right) \\ &=\displaystyle 2n\cdot \left( \sum \limits _{i=1}^{n}{\tilde{w}}_{i}^{2}-n\bar{w}^{2}\right) . \end{aligned}$$

According to the König–Huygens theorem the term in brackets is equal to \(\sum \nolimits _{i=1}^{n}({\tilde{w}}_{i}-\bar{w})^{2}.\) Hence, we arrive at

$$\begin{aligned} \sum \limits _{i=1}^{n}\sum \limits _{j=1}^{n}\left( {\tilde{w}}_{i}-{\tilde{w}}_{j}\right) ^{2}=2n\cdot \sum \limits _{i=1}^{n}\left( {\tilde{w}}_{i}-\bar{w}\right) ^{2}, \end{aligned}$$

implying that our subsequently employed specification of \(s({\tilde{\mathbf {w}}})\) in (5), which is the component of the principal’s utility function that reflects her preferences for equal pay, and the variant inspired by Fehr and Schmidt (1999) are proportional and therefore equivalent.

Appendix 2: Derivation of the principal’s expected disutility

First, we note that the specification (5) of \(s({\tilde{\mathbf {w}}})\) results from (4) when substituting \(\frac{1}{n}\cdot {\mathbf {J}}\) for \({\mathbf {Q}}\) into (4). Since \({\mathbf {I}}-\frac{1}{n}\cdot {\mathbf {J}}=:{\varvec{\Omega }}\) is symmetric as well as idempotent, we can write

$$\begin{aligned} s({\tilde{\mathbf {w}}})=\beta \cdot {\tilde{\mathbf {w}}}^{\prime }{\varvec{\Omega }}{\tilde{\mathbf {w}}}. \end{aligned}$$
(24)

We now use the production function (1) as well as the remuneration function (2) to obtain \({\tilde{\mathbf {w}}}={\mathbf {f}}+{\mathbf {V}}({\mathbf {e}}+{{\tilde{\varvec\upvarepsilon }}}).\) Since we assume all agents to be identical, any optimal contract will assign the same fixed wage component f to each agent. Therefore, we can anticipate \({\mathbf {f}}=f\cdot {\mathbf {i}}.\) Simple algebra then reveals \({\mathbf {f}}^{\prime }{\varvec{\Omega }}{\mathbf {f}}=f^{2}\cdot {\mathbf {i}}{^{\prime }}{\varvec{\Omega }}{\mathbf {i}}=0.\) Hence, (24) becomes

$$\begin{aligned} s({\tilde{\mathbf {w}}})&=\beta \cdot ({\mathbf {e}}^{\prime }+{{\tilde{\varvec\upvarepsilon }}}^{\prime }){\mathbf {V}}^{\prime }{\varvec{\Omega }}{\mathbf {V}}({\mathbf {e}}+{{\tilde{\varvec\upvarepsilon }}})\\ &=\beta \cdot ({\mathbf {e}}^{\prime }{\mathbf {V}}^{\prime }{\varvec{\Omega }}{\mathbf {V}}{\mathbf {e}}+2{\mathbf {e}}^{\prime }{\mathbf {V}}^{\prime }{\varvec{\Omega }}{\mathbf {V}}{{\tilde{\varvec\upvarepsilon }}}+{{\tilde{\varvec\upvarepsilon }}}^{\prime }{\mathbf {V}}^{\prime }{\varvec{\Omega }}{\mathbf {V}}{{\tilde{\varvec\upvarepsilon }}}). \end{aligned}$$
(25)

The first term in brackets, \({\mathbf {e}}^{\prime }{\mathbf {V}}^{\prime }{\varvec{\Omega }}{\mathbf {V}}{\mathbf {e}},\) contains \({\mathbf {V}}{\mathbf {e}},\) which is the vector of expected variable compensation components. In the optimum, all of these expected values are the same (again, because we assume that all agents are identical), implying \({\mathbf {e}}^{\prime }{\mathbf {V}}^{\prime }{\varvec{\Omega }}{\mathbf {V}}{\mathbf {e}}=0.\) Furthermore, \(\mathrm{E}({\mathbf {e}}^{\prime }{\mathbf {V}}^{\prime }{\varvec{\Omega }}{\mathbf {V}}{{\tilde{\varvec\upvarepsilon }}})=0\) since \(\mathrm{E}({{\tilde{\varvec\upvarepsilon }}})={\mathbf {0}}.\) Therefore, the expectation of \(s({\tilde{\mathbf {w}}})\) in (25) reduces to

$$\begin{aligned} \mathrm{E}[s({\tilde{\mathbf {w}}})]=\beta \cdot \mathrm{E}({{\tilde{\varvec\upvarepsilon }}}^{\prime }{\mathbf {V}}^{\prime }{\varvec{\Omega }}{\mathbf {V}}{{\tilde{\varvec\upvarepsilon }}}). \end{aligned}$$
(26)

Applying the trace operator on the right-hand side of (26) in conjunction with the linearity of the expectation operator and \({\varvec{\Upsigma }}=\mathrm{E}({{\tilde{\varvec\upvarepsilon }}}{{\tilde{\varvec\upvarepsilon }}}^{\prime })-\mathrm{E}({{\tilde{\varvec\upvarepsilon }}})\mathrm{E}({{\tilde{\varvec\upvarepsilon }}})^{\prime }=\mathrm{E}({{\tilde{\varvec\upvarepsilon }}}{{\tilde{\varvec\upvarepsilon }}}^{\prime })\) yields

$$\begin{aligned} \mathrm{E}[s({\tilde{\mathbf {w}}})] &=\beta \cdot \mathrm{E}[\mathrm{tr}({{\tilde{\varvec\upvarepsilon }}}^{\prime }{\mathbf {V}}^{\prime }{\varvec{\Omega }}{\mathbf {V}}{{\tilde{\varvec\upvarepsilon }}})]=\beta \cdot \mathrm{E}[\mathrm{tr}({\mathbf {V}}^{\prime }{\varvec{\Omega }}{\mathbf {V}}{{\tilde{\varvec\upvarepsilon }}}{{\tilde{\varvec\upvarepsilon }}}^{\prime })]\\ &=\beta \cdot \mathrm{tr}[{\mathbf {V}}^{\prime }{\varvec{\Omega }}{\mathbf {V}}\mathrm{E}({{\tilde{\varvec\upvarepsilon }}}{{\tilde{\varvec\upvarepsilon }}}^{\prime })]=\beta \cdot \mathrm{tr}({\mathbf {V}}^{\prime }{\varvec{\Omega }}{\mathbf {V}}{\varvec{\Upsigma }}). \end{aligned}$$
(27)

Finally, we plug \({\mathbf {I}}-\frac{1}{n}\cdot {\mathbf {J}}={\mathbf {I}}-\frac{1}{n}\cdot {\mathbf {i}}{\mathbf {i}}^{\prime }\) for \({\varvec{\Omega }}\) into the last term of (27) and make use of the trace’s invariance under cyclic permutations:

$$\begin{aligned} \mathrm{E}[s({\tilde{\mathbf {w}}})] &=\beta \cdot \left[ \mathrm{tr}({\mathbf {V}}^{\prime }{\mathbf {V}}{\varvec{\Upsigma }})-\frac{1}{n}\cdot \mathrm{tr}({\mathbf {V}}^{\prime }{\mathbf {i}}{\mathbf {i}}^{\prime }{\mathbf {V}}{\varvec{\Upsigma }})\right] \\ &=\beta \cdot \left[ \mathrm{tr}({\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime })-\frac{1}{n}\cdot {\mathbf {i}}^{\prime }{\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime }{\mathbf {i}}\right] . \end{aligned}$$
(28)

Appendix 3: Derivation of the optimal contract in cases of individual agent behavior

1.1 Appendix 3.1: Optimal shares

To solve the program (9), we maximize the Lagrangian function \(\mathcal {L}=\Phi +\varvec{\uplambda }^{\prime }\varvec{\upvarphi },\) where \(\Phi\) is given by (7), \(\varvec{\upvarphi }\) is given by (3), and \(\varvec{\uplambda }\) is a vector of Lagrange multipliers used to incorporate the PC \({\hat{\varvec{\upvarphi }}}={\mathbf {0}}.\) IC is taken into account by substituting \({\hat{\mathbf {e}}}\) for \({\mathbf {e}}{\text {:}}\)

$$\begin{aligned} \mathcal {L}&={\mathbf {i}}^{\prime }({\mathbf {I}}-{\mathbf {V}}){\hat{\mathbf {e}}}-{\mathbf {i}}^{\prime }{\mathbf {f}}-\beta \cdot \left[ \mathrm{tr}({\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime })-\tfrac{1}{n}{\mathbf {i}}^{\prime }{\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime }{\mathbf {i}}\right] \\ &\quad +\varvec{\uplambda }^{\prime }\left[ {\mathbf {f}}+{\mathbf {V}}{\hat{\mathbf {e}}}-\Delta ({\hat{\mathbf {e}}}{\hat{\mathbf {e}}}^{\prime }){\mathbf {i}}-\tfrac{\alpha }{2}\Delta ({\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime }){\mathbf {i}}\right] . \end{aligned}$$

We now maximize this function with respect to \({\mathbf {f}}\) and \({\mathbf {V}}.\) Since the first derivative of \(\mathcal {L}\) with respect to \({\mathbf {f}}\) is \(-{\mathbf {i}}+\varvec{\uplambda },\) the respective first-order condition is \(\varvec{\uplambda }={\mathbf {i}}.\) Substituting this condition into \(\mathcal {L}\) results in the simplified version

$$\begin{aligned} \mathcal {L}&={\mathbf {i}}^{\prime }{\hat{\mathbf {e}}}-\beta \cdot \left[ \mathrm{tr}({\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime })-\tfrac{1}{n}\cdot {\mathbf {i}}^{\prime }{\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime }{\mathbf {i}}\right] -{\mathbf {i}}^{\prime }\Delta ({\hat{\mathbf {e}}}{\hat{\mathbf {e}}}^{\prime }){\mathbf {i}}-\tfrac{\alpha }{2}\cdot {\mathbf {i}}^{\prime }\Delta ({\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime }){\mathbf {i}}\\ &={\mathbf {i}}^{\prime }{\hat{\mathbf {e}}}-{\hat{\mathbf {e}}}^{\prime }{\hat{\mathbf {e}}}-\left( \frac{\alpha }{2}+\beta \right) \cdot \mathrm{tr}({\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime })+\tfrac{\beta }{n}\cdot {\mathbf {i}}^{\prime }{\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime }{\mathbf {i}}. \end{aligned}$$
(29)

Since \({\hat{\mathbf {e}}}=\tfrac{1}{2}\cdot \Delta ({\mathbf {V}}){\mathbf {i}}\) according to (8), \({\mathbf {i}}^{\prime }{\hat{\mathbf {e}}}\) can also be written \(\frac{1}{2}\cdot \mathrm{tr}({\mathbf {V}})\) and \({\hat{\mathbf {e}}}^{\prime }{\hat{\mathbf {e}}}\) equals \(\frac{1}{4}\cdot \mathrm{tr}[\Delta ({\mathbf {V}})\Delta ({\mathbf {V}})].\) Plugging these expressions into (29) yields the final formulation of the Lagrangian function that is maximized with respect to \({\mathbf {V}}{\text {:}}\)

$$\begin{aligned} \mathcal {L}=\tfrac{1}{2}\cdot \mathrm{tr}({\mathbf {V}})-\tfrac{1}{4}\cdot \mathrm{tr}(\Delta ({\mathbf {V}})\Delta ({\mathbf {V}}))-\left( \tfrac{\alpha }{2}+\beta \right) \cdot \mathrm{tr}({\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime })+\tfrac{\beta }{n}\cdot {\mathbf {i}}^{\prime }{\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime }{\mathbf {i}}. \end{aligned}$$
(30)

The respective gradient \(\nabla {\mathcal {L}},\) i.e., the vector of the first derivatives of \(\mathcal {L}\) with respect to the elements of \({\mathbf {V}},\) evaluates to

$$\begin{aligned} \nabla {\mathcal {L}}=\tfrac{1}{2}\cdot \mathrm{vec}({\mathbf {I}})-\tfrac{1}{2}\cdot \mathrm{vec}[\Delta ({\mathbf {V}})]-(\alpha +2\beta )\cdot \mathrm{vec}({\mathbf {V}}{\varvec{\Upsigma }})+\tfrac{2\beta }{n}\cdot \mathrm{vec}({\mathbf {J}}{\mathbf {V}}{\varvec{\Upsigma }}), \end{aligned}$$

where \(\mathrm{vec}\) is an operator that rearranges the elements of a matrix by stacking its columns into a single column vector. Using the Kronecker product \(\varvec{\otimes },\) we can rewrite \(\mathrm{vec}({\mathbf {V}}{\varvec{\Upsigma }})=({\varvec{\Upsigma }}\varvec{\otimes }{\mathbf {I}})\mathrm{vec}({\mathbf {V}})\) and \(\mathrm{vec}({\mathbf {J}}{\mathbf {V}}{\varvec{\Upsigma }})=({\varvec{\Upsigma }}\varvec{\otimes }{\mathbf {J}})\mathrm{vec}({\mathbf {V}}).\) Furthermore, \(\mathrm{vec}[\Delta ({\mathbf {V}})]={\mathbf {B}}\mathrm{vec}({\mathbf {V}}),\) where \({\mathbf {B}}:=\sum \nolimits _{i=1}^{n}({\mathbf {u}}_{i}\,\varvec{\otimes}\,{\mathbf {u}}_{i})({\mathbf {u}}_{i}^{\prime }\,\varvec{\otimes }\,{\mathbf {u}}_{i}^{\prime })\) and \({\mathbf {u}}_{i}\) is the ith \((n\times 1)\) unit vector. Hence,

$$\begin{aligned} \nabla {\mathcal {L}}=\tfrac{1}{2}\cdot \mathrm{vec}({\mathbf {I}})-\left[ \tfrac{1}{2}\cdot {\mathbf {B}}+(\alpha +2\beta )\cdot {\varvec{\Upsigma }}\,\varvec{\otimes }\,{\mathbf {I}}-\tfrac{2\beta }{n}\cdot {\varvec{\Upsigma }}\,\varvec{\otimes }\,{\mathbf {J}}\right] \mathrm{vec}({\mathbf {V}}). \end{aligned}$$

The first-order condition \(\nabla {\mathcal {L}}={\mathbf {0}}\) is thus equivalent to

$$\begin{aligned} \mathrm{vec}({\mathbf {V}})=({\mathbf {A}}+{\mathbf {B}})^{-1}\mathrm{vec}({\mathbf {I}}), \end{aligned}$$
(31)

where \({\mathbf {A}}:={\varvec{\Upsigma }}\,\varvec{\otimes }\,\left[ (2\alpha +4\beta )\cdot {\mathbf {I}}-\tfrac{4\beta }{n}\cdot {\mathbf {J}}\right] .\) The inverse of \({\mathbf {A}}\) is given by \({{\varvec{\Upsigma }}^{-1}}\,\varvec{\otimes }\,{\mathbf {N}}\) with

$$\begin{aligned} {\mathbf {N}}:=\left[ (2\alpha +4\beta )\cdot {\mathbf {I}}-\tfrac{4\beta }{n}\cdot {\mathbf {J}}\right] ^{-1}=\tfrac{1}{2\alpha +4\beta }\cdot \left( {\mathbf {I}}+\tfrac{2\beta }{n\alpha }\cdot {\mathbf {J}}\right) . \end{aligned}$$

We now can compute the inverse of \({\mathbf {A}}+{\mathbf {B}}{\text {:}}\)

$$\begin{aligned} ({\mathbf {A}}+{\mathbf {B}})^{-1} &={{\mathbf {A}}^{-1}}-\textstyle \sum \limits \limits _{i=1}^{n}\textstyle \sum \limits \limits _{j=1}^{n}\left( {\mathbf {u}}_{i}^{\prime }\varvec{\otimes }{\mathbf {u}}_{i}^{\prime }\right) {\mathbf {T}}\left( {\mathbf {u}}_{j}\varvec{\otimes }{\mathbf {u}}_{j}\right) \cdot {{\mathbf {A}}^{-1}}\left( {\mathbf {u}}_{i}{\mathbf {u}}_{j}^{\prime }\varvec{\otimes }{\mathbf {u}}_{i}{\mathbf {u}}_{j}^{\prime }\right) {{\mathbf {A}}^{-1}}\\ &={{\varvec{\Upsigma }}^{-1}}\varvec{\otimes }{\mathbf {N}}-\textstyle \sum \limits \limits _{i=1}^{n}\textstyle \sum \limits \limits _{j=1}^{n}\left( {\mathbf {u}}_{i}^{\prime }\varvec{\otimes }{\mathbf {u}}_{i}^{\prime }\right) {\mathbf {T}}\left( {\mathbf {u}}_{j}\varvec{\otimes }{\mathbf {u}}_{j}\right) \cdot {{\varvec{\Upsigma }}^{-1}}{\mathbf {u}}_{i}{\mathbf {u}}_{j}^{\prime }{{\varvec{\Upsigma }}^{-1}}\varvec{\otimes }{\mathbf {N}}{\mathbf {u}}_{i}{\mathbf {u}}_{j}^{\prime }{\mathbf {N}}, \end{aligned}$$

where \({\mathbf {T}}:=({\mathbf {I}}+{\mathbf {B}}{{\mathbf {A}}^{-1}}{\mathbf {B}})^{-1}.\) Plugging this into (31) results in

$$\begin{aligned} \mathrm{vec}({\mathbf {V}}) &=\left( {{\varvec{\Upsigma }}^{-1}}\varvec{\otimes }{\mathbf {N}}\right) \mathrm{vec}({\mathbf {I}})\\ &\quad -\textstyle \sum \limits \limits _{i=1}^{n}\textstyle \sum \limits \limits _{j=1}^{n}\left( {\mathbf {u}}_{i}^{\prime }\varvec{\otimes }{\mathbf {u}}_{i}^{\prime }\right) {\mathbf {T}}\left( {\mathbf {u}}_{j}\varvec{\otimes }{\mathbf {u}}_{j}\right) \cdot \left( {{\varvec{\Upsigma }}^{-1}}{\mathbf {u}}_{i}{\mathbf {u}}_{j}^{\prime }{{\varvec{\Upsigma }}^{-1}}\varvec{\otimes }{\mathbf {N}}{\mathbf {u}}_{i}{\mathbf {u}}_{j}^{\prime }{\mathbf {N}}\right) \mathrm{vec}({\mathbf {I}})\\ &=\mathrm{vec}\left( {\mathbf {N}}{{\varvec{\Upsigma }}^{-1}}\right) \\ &\quad -\textstyle \sum \limits \limits _{i=1}^{n}\textstyle \sum \limits \limits _{j=1}^{n}\left( {\mathbf {u}}_{i}^{\prime }\varvec{\otimes }{\mathbf {u}}_{i}^{\prime }\right) {\mathbf {T}}\left( {\mathbf {u}}_{j}\varvec{\otimes }{\mathbf {u}}_{j}\right) \cdot \mathrm{vec}\left( {\mathbf {N}}{\mathbf {u}}_{i}{\mathbf {u}}_{j}^{\prime }{\mathbf {N}}{{\varvec{\Upsigma }}^{-1}}{\mathbf {u}}_{j}{\mathbf {u}}_{i}^{\prime }{{\varvec{\Upsigma }}^{-1}}\right) \\ &=\mathrm{vec}\left( {\mathbf {N}}\left[ {\mathbf {I}}-\textstyle \sum \limits \limits _{i=1}^{n}\textstyle \sum \limits \limits _{j=1}^{n}\left( {\mathbf {u}}_{i}^{\prime }\varvec{\otimes }{\mathbf {u}}_{i}^{\prime }\right) {\mathbf {T}}\left( {\mathbf {u}}_{j}\varvec{\otimes }{\mathbf {u}}_{j}\right) \cdot {\mathbf {u}}_{i}{\mathbf {u}}_{j}^{\prime }{\mathbf {N}}{{\varvec{\Upsigma }}^{-1}}{\mathbf {u}}_{j}{\mathbf {u}}_{i}^{\prime }\right] {{\varvec{\Upsigma }}^{-1}}\right) , \end{aligned}$$

which is equivalent to

$$\begin{aligned} {\mathbf {V}}&={\mathbf {N}}\left[ {\mathbf {I}}-\textstyle \sum \limits \limits _{i=1}^{n}\textstyle \sum \limits \limits _{j=1}^{n}\left( {\mathbf {u}}_{i}^{\prime }\varvec{\otimes }{\mathbf {u}}_{i}^{\prime }\right) {\mathbf {T}}\left( {\mathbf {u}}_{j}\varvec{\otimes }{\mathbf {u}}_{j}\right) \cdot {\mathbf {u}}_{i}{\mathbf {u}}_{j}^{\prime }{\mathbf {N}}{{\varvec{\Upsigma }}^{-1}}{\mathbf {u}}_{j}{\mathbf {u}}_{i}^{\prime }\right] {{\varvec{\Upsigma }}^{-1}}\\ &={\mathbf {N}}\left[ {\mathbf {I}}-\Delta \left( {\varvec{\Upxi }}\Delta \left( {\mathbf {N}}{{\varvec{\Upsigma }}^{-1}}\right) {\mathbf {J}}\right) \right] {{\varvec{\Upsigma }}^{-1}}, \end{aligned}$$
(32)

where

$$\begin{aligned} {\varvec{\Upxi }}:=\textstyle \sum \limits \limits _{i=1}^{n}\textstyle \sum \limits \limits _{j=1}^{n}\left( {\mathbf {u}}_{i}^{\prime }\varvec{\otimes }{\mathbf {u}}_{i}^{\prime }\right) {\mathbf {T}}\left( {\mathbf {u}}_{j}\varvec{\otimes }{\mathbf {u}}_{j}\right) \cdot {\mathbf {u}}_{i}{\mathbf {u}}_{j}^{\prime } &={\mathbf {C}}\left[ {\mathbf {I}}+{\mathbf {B}}\left( {{\varvec{\Upsigma }}^{-1}}\varvec{\otimes }{\mathbf {N}}\right) {\mathbf {B}}\right] ^{-1}{\mathbf {C}}^{\prime }\\ &={\mathbf {C}}\left\{ {\mathbf {I}}+{\mathbf {B}}\left[ \left( {\mathbf {N}}\,\varvec{\odot }\,{{\varvec{\Upsigma }}^{-1}}\right) \,\varvec{\otimes }\,{\mathbf {J}}\right] {\mathbf {B}}\right\} ^{-1}{\mathbf {C}}^{\prime } \end{aligned}$$

and \({\mathbf {C}}:=\sum \nolimits _{i=1}^{n}{\mathbf {u}}_{i}({\mathbf {u}}_{i}^{\prime }\varvec{\otimes }{\mathbf {u}}_{i}^{\prime }).\,\varvec{\odot }\) denotes the entry-wise (or Hadamard) product of two matrices. Plugging this as well as \(\Delta ({\mathbf {N}}{{\varvec{\Upsigma }}^{-1}}){\mathbf {J}}=({\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}){\mathbf {J}}\) into (32) yields

$$\begin{aligned} {\mathbf {V}}^{in}&={\mathbf {N}}\Delta \left( {\mathbf {I}}-{\mathbf {C}}\left\{ {\mathbf {I}}+{\mathbf {B}}\left[ \left( {\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) \varvec{\otimes }{\mathbf {J}}\right] {\mathbf {B}}\right\} ^{-1}{\mathbf {C}}^{\prime }\left( {\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) {\mathbf {J}}\right) {{\varvec{\Upsigma }}^{-1}}\\ &={\mathbf {N}}\Delta \left( {\mathbf {J}}-{\mathbf {J}}\left( {\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) {\mathbf {C}}\left\{ {\mathbf {I}}+{\mathbf {B}}\left[ \left( {\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) \varvec{\otimes }{\mathbf {J}}\right] {\mathbf {B}}\right\} ^{-1}{\mathbf {C}}^{\prime }\right) {{\varvec{\Upsigma }}^{-1}}\\ &={\mathbf {N}}\Delta \left( {\mathbf {J}}\left[ {\mathbf {I}}-\left( {\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) {\mathbf {C}}\left\{ {\mathbf {I}}+{\mathbf {B}}\left[ \left( {\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) \varvec{\otimes }{\mathbf {J}}\right] {\mathbf {B}}\right\} ^{-1}{\mathbf {C}}^{\prime }\right] \right) {{\varvec{\Upsigma }}^{-1}}\\ &={\mathbf {N}}\Delta \left( {\mathbf {J}}\left[ {\mathbf {I}}+{\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right] ^{-1}\right) {{\varvec{\Upsigma }}^{-1}}. \end{aligned}$$

1.2 Appendix 3.2: Optimal objective function value

The principal’s optimal objective function value \(\Phi ^{in}\) coincides with the value of the Lagrangian function (30) evaluated at \({\mathbf {V}}={\mathbf {V}}^{in}.\) Since \({\mathbf {V}}^{in}\) is symmetric, we can write

$$\begin{aligned} \Phi ^{in}=\tfrac{1}{2}\mathrm{tr}\left( {\mathbf {V}}^{in}\right) -\tfrac{1}{4}\mathrm{tr}\left( \Delta \left( {\mathbf {V}}^{in}\right) \Delta \left( {\mathbf {V}}^{in}\right) \right) -\left( \tfrac{\alpha }{2}+\beta \right) \cdot \mathrm{tr}\left( {\mathbf {V}}^{in}{\varvec{\Upsigma }}{\mathbf {V}}^{in}\right) +\tfrac{\beta }{n}{\mathbf {i}}^{\prime }{\mathbf {V}}^{in}{\varvec{\Upsigma }}{\mathbf {V}}^{in}{\mathbf {i}}. \end{aligned}$$

Making use of \(\Delta ({\mathbf {V}}^{in})=\Delta ({\mathbf {J}}[{\mathbf {I}}+{\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}]^{-1}[{\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}]),\) the trace of \({\mathbf {V}}^{in}\) calculates

$$\begin{aligned} \mathrm{tr}\left( {\mathbf {V}}^{in}\right) ={\mathbf {i}}^{\prime }\Delta \left( {\mathbf {V}}^{in}\right) {\mathbf {i}}={\mathbf {i}}^{\prime }\left( {\mathbf {I}}+{\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) ^{-1}\left( {\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) {\mathbf {i}}. \end{aligned}$$
(33)

Furthermore, \(\mathrm{tr}(\Delta ({\mathbf {V}}^{in})\Delta ({\mathbf {V}}^{in}))\) is equivalent to

$$\begin{aligned} {\mathbf {i}}^{\prime }\Delta \left( {\mathbf {V}}^{in}\right) \Delta \left( {\mathbf {V}}^{in}\right) {\mathbf {i}}={\mathbf {i}}^{\prime }\left( {\mathbf {I}}+{\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) ^{-1}\left( {\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) \Delta \left( {\mathbf {V}}^{in}\right) {\mathbf {i}} \end{aligned}$$
(34)

and \({\mathbf {V}}^{in}{\varvec{\Upsigma }}{\mathbf {V}}^{in}\) equals \({\mathbf {N}}\Delta ({\mathbf {J}}[{\mathbf {I}}+{\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}]^{-1}){\mathbf {V}}^{in},\) implying

$$\begin{aligned} \mathrm{tr}\left( {\mathbf {V}}^{in}{\varvec{\Upsigma }}{\mathbf {V}}^{in}\right) &=\mathrm{tr}\left\{ \Delta \left( {\mathbf {J}}\left[ {\mathbf {I}}+{\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right] ^{-1}\right) {\mathbf {V}}^{in}{\mathbf {N}}\right\} \\ &={\mathbf {i}}^{\prime }\Delta \left( {\mathbf {J}}\left[ {\mathbf {I}}+{\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right] ^{-1}\right) \Delta \left( {\mathbf {V}}^{in}{\mathbf {N}}\right) {\mathbf {i}}\\ &={\mathbf {i}}^{\prime }\left( {\mathbf {I}}+{\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) ^{-1}\Delta \left( {\mathbf {V}}^{in}{\mathbf {N}}\right) {\mathbf {i}} \end{aligned}$$
(35)

as well as

$$\begin{aligned} {\mathbf {i}}^{\prime }{\mathbf {V}}^{in}{\varvec{\Upsigma }}{\mathbf {V}}^{in}{\mathbf {i}}&=\mathrm{tr}\left\{ \Delta \left( {\mathbf {J}}\left[ {\mathbf {I}}+{\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right] ^{-1}\right) {\mathbf {V}}^{in}{\mathbf {J}}{\mathbf {N}}\right\} \\ &={\mathbf {i}}^{\prime }\left( {\mathbf {I}}+{\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) ^{-1}\Delta \left( {\mathbf {V}}^{in}{\mathbf {J}}{\mathbf {N}}\right) {\mathbf {i}}. \end{aligned}$$
(36)

Plugging (33)–(36) into \(\Phi ^{in},\) we arrive at \(\Phi ^{in}=\frac{1}{4}\cdot {\mathbf {i}}^{\prime }({\mathbf {I}}+{\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}})^{-1}{\mathbf {D}}{\mathbf {i}},\) where

$$\begin{aligned} {\mathbf {D}}&:=\left( {\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) \left[ 2\cdot {\mathbf {I}}-\Delta \left( {\mathbf {V}}^{in}\right) \right] -(2\alpha +4\beta )\cdot \Delta \left( {\mathbf {V}}^{in}{\mathbf {N}}\right) +\frac{4\beta }{n}\cdot \Delta \left( {\mathbf {V}}^{in}{\mathbf {J}}{\mathbf {N}}\right) \\ &=\left( {\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) \left[ 2\cdot {\mathbf {I}}-\Delta \left( {\mathbf {V}}^{in}\right) \right] -\Delta \left\{ {\mathbf {V}}^{in}\left[ (2\alpha +4\beta )\cdot {\mathbf {I}}-\frac{4\beta }{n}\cdot {\mathbf {J}}\right] {\mathbf {N}}\right\} \\ &=\left( {\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) \left[ 2\cdot {\mathbf {I}}-\Delta \left( {\mathbf {V}}^{in}\right) \right] -\Delta \left( {\mathbf {V}}^{in}\right) \\ &=2\cdot \left( {\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) -\left( {\mathbf {I}}+{\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) \Delta \left( {\mathbf {V}}^{in}\right) . \end{aligned}$$

Hence,

$$\begin{aligned} \Phi ^{in}&=\frac{1}{4}\cdot {\mathbf {i}}^{\prime }\left[ 2\cdot \left( {\mathbf {I}}+{\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) ^{-1}\left( {\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) -\Delta \left( {\mathbf {V}}^{in}\right) \right] {\mathbf {i}}\\ &=\frac{1}{4}\cdot \left[ 2\cdot {\mathbf {i}}^{\prime }\left( {\mathbf {I}}+{\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) ^{-1}\left( {\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) {\mathbf {i}}-\mathrm{tr}\left( {\mathbf {V}}^{in}\right) \right] \\ &=\frac{1}{4}\cdot \left\{ 2\cdot \mathrm{tr}\left[ \left( {\mathbf {I}}+{\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right) ^{-1}\Delta \left( {\mathbf {N}}{{\varvec{\Upsigma }}^{-1}}\right) {\mathbf {J}}\right] -\mathrm{tr}\left( {\mathbf {V}}^{in}\right) \right\} \\ &=\frac{1}{4}\cdot \left\{ 2\cdot \mathrm{tr}\left[ {\mathbf {N}}\Delta \left( {\mathbf {J}}\left[ {\mathbf {I}}+{\mathbf {N}}\varvec{\odot }{{\varvec{\Upsigma }}^{-1}}\right] ^{-1}\right) {{\varvec{\Upsigma }}^{-1}}\right] -\mathrm{tr}\left( {\mathbf {V}}^{in}\right) \right\} \\ &=\frac{1}{4}\cdot \mathrm{tr}\left( {\mathbf {V}}^{in}\right) . \end{aligned}$$

Appendix 4: Derivation of the optimal contract in cases of coordinated agent behavior

1.1 Appendix 4.1: Optimal shares

Exactly as in Appendix 3.1, the Lagrangian function (29) has to be maximized with respect to \({\mathbf {V}}.\) However \({\hat{\mathbf {e}}}\) is now given by \(\tfrac{1}{2}\cdot {\mathbf {V}}^{\prime }{\mathbf {i}}\) according to (18). Therefore, \({\mathbf {i}}^{\prime }{\hat{\mathbf {e}}}\) now evaluates to \(\frac{1}{2}\cdot {\mathbf {i}}^{\prime }{\mathbf {V}}{\mathbf {i}}\) and \({\hat{\mathbf {e}}}^{\prime }{\hat{\mathbf {e}}}\) equals \(\frac{1}{4}\cdot {\mathbf {i}}^{\prime }{\mathbf {V}}{\mathbf {V}}^{\prime }{\mathbf {i}}.\) Plugging these expressions into (29) results in the final formulation of the Lagrangian function:

$$\begin{aligned} \mathcal {L}=\tfrac{1}{2}\cdot {\mathbf {i}}^{\prime }{\mathbf {V}}{\mathbf {i}}-\tfrac{1}{4}\cdot {\mathbf {i}}^{\prime }{\mathbf {V}}{\mathbf {V}}^{\prime }{\mathbf {i}}-\left( \tfrac{\alpha }{2}+\beta \right) \cdot \mathrm{tr}({\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime })+\tfrac{\beta }{n}\cdot {\mathbf {i}}^{\prime }{\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime }{\mathbf {i}}. \end{aligned}$$
(37)

The respective gradient \(\nabla {\mathcal {L}}\) can be written

$$\begin{aligned} \nabla {\mathcal {L}}=\tfrac{1}{2}\cdot {\mathbf {i}}-\tfrac{1}{2}\cdot \mathrm{vec}({\mathbf {J}}{\mathbf {V}})-(\alpha +2\beta )\cdot \mathrm{vec}({\mathbf {V}}{\varvec{\Upsigma }})+\tfrac{2\beta }{n}\cdot \mathrm{vec}({\mathbf {J}}{\mathbf {V}}{\varvec{\Upsigma }}). \end{aligned}$$

Thus, the first-order condition \(\nabla {\mathcal {L}}={\mathbf {0}}\) is equivalent to

$$\begin{aligned} {\mathbf {J}}{\mathbf {V}}+(2\alpha +4\beta )\cdot {\mathbf {V}}{\varvec{\Upsigma }}-\tfrac{4\beta }{n}\cdot {\mathbf {J}}{\mathbf {V}}{\varvec{\Upsigma }}={\mathbf {J}}\iff {\mathbf {J}}{\mathbf {V}}{\mathbf {I}}+{\mathbf {N}}^{-1}{\mathbf {V}}{\varvec{\Upsigma }}={\mathbf {J}}, \end{aligned}$$

with \({\mathbf {N}}\) defined as in Appendix 3.1. Solving the latter equation for \({\mathbf {V}},\) we arrive at

$$\begin{aligned} \mathrm{vec}({\mathbf {V}})=({\mathbf {A}}+{\mathbf {B}})^{-1}\mathrm{vec}({\mathbf {J}}), \end{aligned}$$
(38)

where \({\mathbf {A}}:={\varvec{\Upsigma }}\,\varvec{\otimes }\,{\mathbf {N}}^{-1}\) and \({\mathbf {B}}:={\mathbf {I}}\,\varvec{\otimes }\,{\mathbf {J}}.\) As in Appendix 3.1, the inverse of \({\mathbf {A}}\) is given by \({{\varvec{\Upsigma }}^{-1}}\,\varvec{\otimes }\,{\mathbf {N}}.\) We note that \({\mathbf {B}}\) can be represented in the following way:

$$\begin{aligned} {\mathbf {B}}={\mathbf {B}}_{1}{\mathbf {B}}_{2},\quad \text {where}\quad {\mathbf {B}}_{1}:=\textstyle \sum \limits \limits _{i=1}^{n}\left( {\mathbf {u}}_{i}\,\varvec{\otimes }\,{\mathbf {i}}\right) \left( {\mathbf {u}}_{i}^{\prime }\,\varvec{\otimes }\,{\mathbf {u}}_{i}^{\prime }\right) \quad \text {and}\quad {\mathbf {B}}_{2}:=\textstyle \sum \limits \limits _{i=1}^{n}\left( {\mathbf {u}}_{i}\,\varvec{\otimes }\,{\mathbf {u}}_{i}\right) \left( {\mathbf {u}}_{i}^{\prime }\,\varvec{\otimes }\,{\mathbf {i}}^{\prime }\right) . \end{aligned}$$

As in Appendix 3.1, \({\mathbf {u}}_{i}\) denotes the ith \((n\times 1)\) unit vector. We use matrix \({\mathbf {C}}\) as defined in Appendix 3.1 to formulate the auxiliary matrix

$$\begin{aligned} {\mathbf {T}}:=\left( {\mathbf {I}}+{\mathbf {B}}_{2}{{\mathbf {A}}^{-1}}{\mathbf {B}}_{1}\right) ^{-1}=\left( {\mathbf {I}}+{\mathbf {i}}^{\prime }{\mathbf {N}}{\mathbf {i}}\cdot {\mathbf {C}}^{\prime }{{\varvec{\Upsigma }}^{-1}}{\mathbf {C}}\right) ^{-1}. \end{aligned}$$

We note that \({\mathbf {T}}\) is symmetric. Now we can compute the inverse of \({\mathbf {A}}+{\mathbf {B}}{\text {:}}\)

$$\begin{aligned} ({\mathbf {A}}+{\mathbf {B}})^{-1} &=\left( {\mathbf {A}}+{\mathbf {B}}_{1}{\mathbf {B}}_{2}\right) ^{-1}={{\mathbf {A}}^{-1}}-{{\mathbf {A}}^{-1}}{\mathbf {B}}_{1}{\mathbf {T}}{\mathbf {B}}_{2}{{\mathbf {A}}^{-1}}\\ &={{\mathbf {A}}^{-1}}-\textstyle \sum \limits \limits _{i=1}^{n}\textstyle \sum \limits \limits _{j=1}^{n}\left( {\mathbf {u}}_{i}^{\prime }\,\varvec{\otimes }\,{\mathbf {u}}_{i}^{\prime }\right) {\mathbf {T}}\left( {\mathbf {u}}_{j}\,\varvec{\otimes }\,{\mathbf {u}}_{j}\right) \cdot {{\mathbf {A}}^{-1}}\left( {\mathbf {u}}_{i}{\mathbf {u}}_{j}^{\prime }\,\varvec{\otimes }\,{\mathbf {J}}\right) {{\mathbf {A}}^{-1}}\\ &={{\varvec{\Upsigma }}^{-1}}\,\varvec{\otimes }\,{\mathbf {N}}-\textstyle \sum \limits \limits _{i=1}^{n}\textstyle \sum \limits \limits _{j=1}^{n}\left( {\mathbf {u}}_{i}^{\prime }\,\varvec{\otimes }\,{\mathbf {u}}_{i}^{\prime }\right) {\mathbf {T}}\left( {\mathbf {u}}_{j}\,\varvec{\otimes }\,{\mathbf {u}}_{j}\right) \cdot {{\varvec{\Upsigma }}^{-1}}{\mathbf {u}}_{i}{\mathbf {u}}_{j}^{\prime }{{\varvec{\Upsigma }}^{-1}}\,\varvec{\otimes }\,{\mathbf {N}}{\mathbf {J}}{\mathbf {N}}. \end{aligned}$$

Plugging this into (38) yields

$$\begin{aligned} \mathrm{vec}({\mathbf {V}}) &=\left( {{\varvec{\Upsigma }}^{-1}}\,\varvec{\otimes }\,{\mathbf {N}}\right) \mathrm{vec}({\mathbf {J}})\\ &\quad -\textstyle \sum \limits \limits _{i=1}^{n}\textstyle \sum \limits \limits _{j=1}^{n}\left( {\mathbf {u}}_{i}^{\prime }\,\varvec{\otimes }\,{\mathbf {u}}_{i}^{\prime }\right) {\mathbf {T}}\left( {\mathbf {u}}_{j}\,\varvec{\otimes }\,{\mathbf {u}}_{j}\right) \cdot \left( {{\varvec{\Upsigma }}^{-1}}{\mathbf {u}}_{i}{\mathbf {u}}_{j}^{\prime }{{\varvec{\Upsigma }}^{-1}}\,\varvec{\otimes }\,{\mathbf {N}}{\mathbf {J}}{\mathbf {N}}\right) \mathrm{vec}({\mathbf {J}})\\ &=\mathrm{vec}\left( {\mathbf {N}}{\mathbf {J}}{{\varvec{\Upsigma }}^{-1}}\right) \\ &\quad -\textstyle \sum \limits \limits _{i=1}^{n}\textstyle \sum \limits \limits _{j=1}^{n}\left( {\mathbf {u}}_{i}^{\prime }\,\varvec{\otimes }\,{\mathbf {u}}_{i}^{\prime }\right) {\mathbf {T}}\left( {\mathbf {u}}_{j}\,\varvec{\otimes }\,{\mathbf {u}}_{j}\right) \cdot \mathrm{vec}\left( {\mathbf {N}}{\mathbf {J}}{\mathbf {N}}{\mathbf {J}}{{\varvec{\Upsigma }}^{-1}}{\mathbf {u}}_{j}{\mathbf {u}}_{i}^{\prime }{{\varvec{\Upsigma }}^{-1}}\right) \\ &=\mathrm{vec}\left( {\mathbf {N}}{\mathbf {J}}\left[ {\mathbf {I}}-\textstyle \sum \limits \limits _{i=1}^{n}\textstyle \sum \limits \limits _{j=1}^{n}\left( {\mathbf {u}}_{i}^{\prime }\,\varvec{\otimes }\,{\mathbf {u}}_{i}^{\prime }\right) {\mathbf {T}}\left( {\mathbf {u}}_{j}\,\varvec{\otimes }\,{\mathbf {u}}_{j}\right) \cdot {\mathbf {N}}{\mathbf {J}}{{\varvec{\Upsigma }}^{-1}}{\mathbf {u}}_{j}{\mathbf {u}}_{i}^{\prime }\right] {{\varvec{\Upsigma }}^{-1}}\right) , \end{aligned}$$

which is equivalent to

$$\begin{aligned} {\mathbf {V}}&={\mathbf {N}}{\mathbf {J}}\left[ {\mathbf {I}}-\textstyle \sum \limits \limits _{i=1}^{n}\textstyle \sum \limits \limits _{j=1}^{n}\left( {\mathbf {u}}_{i}^{\prime }\,\varvec{\otimes }\,{\mathbf {u}}_{i}^{\prime }\right) {\mathbf {T}}\left( {\mathbf {u}}_{j}\,\varvec{\otimes }\,{\mathbf {u}}_{j}\right) \cdot {\mathbf {N}}{\mathbf {J}}{{\varvec{\Upsigma }}^{-1}}{\mathbf {u}}_{j}{\mathbf {u}}_{i}^{\prime }\right] {{\varvec{\Upsigma }}^{-1}}\\ &={\mathbf {N}}{\mathbf {J}}({\mathbf {I}}-{\mathbf {i}}^{\prime }{\mathbf {N}}{\mathbf {i}}\cdot {{\varvec{\Upsigma }}^{-1}}{\mathbf {C}}{\mathbf {T}}{\mathbf {C}}^{\prime }){{\varvec{\Upsigma }}^{-1}}\\ &={\mathbf {N}}{\mathbf {J}}{{\varvec{\Upsigma }}^{-1}}\left[ {\mathbf {I}}-{\mathbf {i}}^{\prime }{\mathbf {N}}{\mathbf {i}}\cdot {\mathbf {C}}\left( {\mathbf {I}}+{\mathbf {i}}^{\prime }{\mathbf {N}}{\mathbf {i}}\cdot {\mathbf {C}}^{\prime }{{\varvec{\Upsigma }}^{-1}}{\mathbf {C}}\right) ^{-1}{\mathbf {C}}^{\prime }{{\varvec{\Upsigma }}^{-1}}\right] \\ &={\mathbf {N}}{\mathbf {J}}{{\varvec{\Upsigma }}^{-1}}\left( {\mathbf {I}}+{\mathbf {i}}^{\prime }{\mathbf {N}}{\mathbf {i}}\cdot {{\varvec{\Upsigma }}^{-1}}\right) ^{-1}. \end{aligned}$$

Considering \({\mathbf {N}}{\mathbf {J}}=\left[ \tfrac{1}{2\alpha +4\beta }\cdot \left( {\mathbf {I}}+\tfrac{2\beta }{n\alpha }\cdot {\mathbf {J}}\right) \right] {\mathbf {J}}=\tfrac{1}{2\alpha }\cdot {\mathbf {J}}\) and \({\mathbf {i}}^{\prime }{\mathbf {N}}{\mathbf {i}}={\mathbf {i}}^{\prime }\left[ \tfrac{1}{2\alpha +4\beta }\cdot \left( {\mathbf {I}}+\tfrac{2\beta }{n\alpha }\cdot {\mathbf {J}}\right) \right] {\mathbf {i}}=\tfrac{n}{2\alpha },\) we eventually arrive at

$$\begin{aligned} {\mathbf {V}}^c=\tfrac{1}{2\alpha }\cdot {\mathbf {J}}{{\varvec{\Upsigma }}^{-1}}\left( {\mathbf {I}}+\tfrac{n}{2\alpha }\cdot {{\varvec{\Upsigma }}^{-1}}\right) ^{-1}. \end{aligned}$$

1.2 Appendix 4.2: Optimal objective function value

The principal’s optimal objective function value \(\Phi ^c\) coincides with the value of the Lagrangian function (37) evaluated at \({\mathbf {V}}={\mathbf {V}}^c.\) Since \({\mathbf {V}}^c\) is symmetric, we can write

$$\begin{aligned} \Phi ^c=\tfrac{1}{2}\cdot {\mathbf {i}}^{\prime }{\mathbf {V}}^c{\mathbf {i}}-\tfrac{1}{4}\cdot {\mathbf {i}}^{\prime }{\mathbf {V}}^c{\mathbf {V}}^c{\mathbf {i}}-\left( \tfrac{\alpha }{2}+\beta \right) \cdot \mathrm{tr}\left( {\mathbf {V}}^c{\varvec{\Upsigma }}{\mathbf {V}}^c\right) +\tfrac{\beta }{n}\cdot {\mathbf {i}}^{\prime }{\mathbf {V}}^c{\varvec{\Upsigma }}{\mathbf {V}}^c{\mathbf {i}} \end{aligned}$$

and observe

$$\begin{aligned} {\mathbf {i}}^{\prime }{\mathbf {V}}^c{\mathbf {i}}=\tfrac{n}{2\alpha }\cdot {\mathbf {i}}^{\prime }{{\varvec{\Upsigma }}^{-1}}\left( {\mathbf {I}}+\tfrac{n}{2\alpha }\cdot {{\varvec{\Upsigma }}^{-1}}\right) ^{-1}{\mathbf {i}} \end{aligned}$$
(39)

as well as

$$\begin{aligned} {\mathbf {i}}^{\prime }{\mathbf {V}}^c{\mathbf {V}}^c{\mathbf {i}}=\left( \tfrac{n}{2\alpha }\right) ^{2}\cdot {\mathbf {i}}^{\prime }{{\varvec{\Upsigma }}^{-1}}\left( {\mathbf {I}}+\tfrac{n}{2\alpha }\cdot {{\varvec{\Upsigma }}^{-1}}\right) ^{-1}\left( {\mathbf {I}}+\tfrac{n}{2\alpha }\cdot {{\varvec{\Upsigma }}^{-1}}\right) ^{-1}{{\varvec{\Upsigma }}^{-1}}{\mathbf {i}}. \end{aligned}$$
(40)

\({\mathbf {V}}^c{\varvec{\Upsigma }}{\mathbf {V}}^c\) obviously equals \(\left( \tfrac{1}{2\alpha }\right) ^{2}\cdot {\mathbf {J}}{{\varvec{\Upsigma }}^{-1}}\left( {\mathbf {I}}+\tfrac{n}{2\alpha }\cdot {{\varvec{\Upsigma }}^{-1}}\right) ^{-1}{\varvec{\Upsigma }}\left( {\mathbf {I}}+\tfrac{n}{2\alpha }\cdot {{\varvec{\Upsigma }}^{-1}}\right) ^{-1}{{\varvec{\Upsigma }}^{-1}}{\mathbf {J}},\) implying

$$\begin{aligned} \mathrm{tr}\left( {\mathbf {V}}^c{\varvec{\Upsigma }}{\mathbf {V}}^c\right) &=\left( \tfrac{1}{2\alpha }\right) ^{2}{\mathbf {i}}^{\prime }\Delta \left[ {\mathbf {J}}{{\varvec{\Upsigma }}^{-1}}\left( {\mathbf {I}}+\tfrac{n}{2\alpha }{{\varvec{\Upsigma }}^{-1}}\right) ^{-1}{\varvec{\Upsigma }}\left( {\mathbf {I}}+\tfrac{n}{2\alpha }{{\varvec{\Upsigma }}^{-1}}\right) ^{-1}{{\varvec{\Upsigma }}^{-1}}{\mathbf {J}}\right] {\mathbf {i}}\\ &=\tfrac{n}{(2\alpha )^{2}}\cdot {\mathbf {i}}^{\prime }{{\varvec{\Upsigma }}^{-1}}\left( {\mathbf {I}}+\tfrac{n}{2\alpha }\cdot {{\varvec{\Upsigma }}^{-1}}\right) ^{-1}{\varvec{\Upsigma }}\left( {\mathbf {I}}+\tfrac{n}{2\alpha }\cdot {{\varvec{\Upsigma }}^{-1}}\right) ^{-1}{{\varvec{\Upsigma }}^{-1}}{\mathbf {i}} \end{aligned}$$
(41)

as well as

$$\begin{aligned} {\mathbf {i}}^{\prime }{\mathbf {V}}^c{\varvec{\Upsigma }}{\mathbf {V}}^c{\mathbf {i}}&=\left( \tfrac{n}{2\alpha }\right) ^{2}\cdot {\mathbf {i}}^{\prime }{{\varvec{\Upsigma }}^{-1}}\left( {\mathbf {I}}+\tfrac{n}{2\alpha }\cdot {{\varvec{\Upsigma }}^{-1}}\right) ^{-1}{\varvec{\Upsigma }}\left( {\mathbf {I}}+\tfrac{n}{2\alpha }\cdot {{\varvec{\Upsigma }}^{-1}}\right) ^{-1}{{\varvec{\Upsigma }}^{-1}}{\mathbf {i}}\\ &=n\cdot \mathrm{tr}\left( {\mathbf {V}}^c{\varvec{\Upsigma }}{\mathbf {V}}^c\right) . \end{aligned}$$
(42)

Plugging (39)–(42) into \(\Phi ^c,\) we arrive at \(\Phi ^c=\frac{n}{8\alpha }\cdot {\mathbf {i}}^{\prime }{{\varvec{\Upsigma }}^{-1}}\left( {\mathbf {I}}+\tfrac{n}{2\alpha }\cdot {{\varvec{\Upsigma }}^{-1}}\right) ^{-1}{\mathbf {D}}{\mathbf {i}}=\frac{1}{4}\cdot {\mathbf {i}}^{\prime }{\mathbf {V}}^c{\mathbf {D}}{\mathbf {i}},\) where

$$\begin{aligned} {\mathbf {D}}&:=2\cdot {\mathbf {I}}-\tfrac{n}{2\alpha }\cdot \left( {\mathbf {I}}+\tfrac{n}{2\alpha }\cdot {{\varvec{\Upsigma }}^{-1}}\right) ^{-1}{{\varvec{\Upsigma }}^{-1}}-{\varvec{\Upsigma }}\left( {\mathbf {I}}+\tfrac{n}{2\alpha }\cdot {{\varvec{\Upsigma }}^{-1}}\right) ^{-1}{{\varvec{\Upsigma }}^{-1}}\\ &=2\cdot {\mathbf {I}}-\left( \tfrac{n}{2\alpha }\cdot {\mathbf {I}}+{\varvec{\Upsigma }}\right) \left( {\mathbf {I}}+\tfrac{n}{2\alpha }\cdot {{\varvec{\Upsigma }}^{-1}}\right) ^{-1}{{\varvec{\Upsigma }}^{-1}}\\ &=2\cdot {\mathbf {I}}-{\varvec{\Upsigma }}\left( {\mathbf {I}}+\tfrac{n}{2\alpha }\cdot {{\varvec{\Upsigma }}^{-1}}\right) \left( {\mathbf {I}}+\tfrac{n}{2\alpha }\cdot {{\varvec{\Upsigma }}^{-1}}\right) ^{-1}{{\varvec{\Upsigma }}^{-1}}\\ &=2\cdot {\mathbf {I}}-{\mathbf {I}}={\mathbf {I}}. \end{aligned}$$

Hence, \(\Phi ^c=\tfrac{1}{4}\cdot {\mathbf {i}}^{\prime }{\mathbf {V}}^c{\mathbf {i}}\) immediately follows.

Appendix 5: Calculations for our robustness checks

We replace \(\beta\) with \(\beta _{P}\) and measure the strength of the agents’ social preferences by \(\beta _{A}.\) The principal’s goal function then is:

$$\begin{aligned} \Phi ={\mathbf {i}}^{\prime }({\mathbf {I}}-{\mathbf {V}}){\mathbf {e}}-{\mathbf {i}}^{\prime }{\mathbf {f}}-\beta _{P}\cdot \left[ \mathrm{tr}({\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime })-\tfrac{1}{n}\cdot {\mathbf {i}}^{\prime }{\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime }{\mathbf {i}}\right] . \end{aligned}$$

1.1 Appendix 5.1: Competitive agents

We define the agents’ social preference function \({\tilde{\mathbf {s}}}=\beta _{A}\cdot \left( \tfrac{1}{n}\cdot {\mathbf {J}}-{\mathbf {I}}\right) {\tilde{\mathbf {w}}},\) which we subtract from the vector that collects all of their wages \({\tilde{\mathbf {w}}}.\,{\tilde{\mathbf {s}}}\) is the vector of differences between \(w_{i}\) and \(\bar{w}.\) The vector comprising the agents’ goal functions thus writes

$$\begin{aligned} \varvec{\upvarphi }&=\mathrm{E}({\tilde{\mathbf {w}}}-{\tilde{\mathbf {s}}})-\Delta ({\mathbf {e}}{\mathbf {e}}^{\prime }){\mathbf {i}}-\tfrac{\alpha }{2}\cdot \Delta (\mathrm{Var}({\tilde{\mathbf {w}}}-{\tilde{\mathbf {s}}})){\mathbf {i}}\\&={\mathbf {f}}+{\mathbf {V}}{\mathbf {e}}-\mathrm{E}({\tilde{\mathbf {s}}})-\Delta ({\mathbf {e}}{\mathbf {e}}^{\prime }){\mathbf {i}}-\tfrac{\alpha }{2}\cdot \Delta (\mathrm{Var}({\tilde{\mathbf {w}}}-{\tilde{\mathbf {s}}})){\mathbf {i}}, \end{aligned}$$

where \(\mathrm{E}({\tilde{\mathbf {s}}})=\beta _{A}\cdot \left( \tfrac{1}{n}\cdot {\mathbf {J}}-{\mathbf {I}}\right) \mathrm{E}({\tilde{\mathbf {w}}}),\) in which \({\mathbf {i}}^{\prime }\mathrm{E}({\tilde{\mathbf {s}}})={\mathbf {0}}\) holds, and

$$\begin{aligned} \mathrm{Var}({\tilde{\mathbf {w}}}-{\tilde{\mathbf {s}}})&=\mathrm{Var}\left\{ \left[ {\mathbf {I}}-\beta _{A}\cdot \left( \tfrac{1}{n}\cdot {\mathbf {J}}-{\mathbf {I}}\right) \right] {\mathbf {V}}{{\tilde{\varvec\upvarepsilon }}}\right\} \\&=\left[ {\mathbf {I}}-\beta _{A}\cdot \left( \tfrac{1}{n}\cdot {\mathbf {J}}-{\mathbf {I}}\right) \right] {\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime }\left[ {\mathbf {I}}-\beta _{A}\cdot \left( \tfrac{1}{n}\cdot {\mathbf {J}}-{\mathbf {I}}\right) \right] ^{\prime }. \end{aligned}$$

The Lagrangian function (29) then writes

$$\begin{aligned} \mathcal {L}={\mathbf {i}}^{\prime }{\hat{\mathbf {e}}}-{\hat{\mathbf {e}}}^{\prime }{\hat{\mathbf {e}}}-\beta _{P}\cdot \mathrm{tr}({\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime })+\tfrac{\beta _{P}}{n}\cdot {\mathbf {i}}^{\prime }{\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime }{\mathbf {i}}-\tfrac{\alpha }{2}\cdot \mathrm{tr}[\mathrm{Var}({\tilde{\mathbf {w}}}-{\tilde{\mathbf {s}}})]. \end{aligned}$$

We now have to take a closer look at the expression \(\mathrm{tr}[\mathrm{Var}({\tilde{\mathbf {w}}}-{\tilde{\mathbf {s}}})]{\text {:}}\)

$$\begin{aligned} \mathrm{tr}[\mathrm{Var}({\tilde{\mathbf {w}}}-{\tilde{\mathbf {s}}})]&=\mathrm{tr}\left\{ \left[ {\mathbf {I}}-\beta _{A}\cdot \left( \tfrac{1}{n}\cdot {\mathbf {J}}-{\mathbf {I}}\right) \right] {\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime }\left[ {\mathbf {I}}-\beta _{A}\cdot \left( \tfrac{1}{n}\cdot {\mathbf {J}}-{\mathbf {I}}\right) \right] ^{\prime }\right\} \\&=\mathrm{tr}\left\{ {\mathbf {I}}+\beta _{A}\left( 2+\beta _{A}\right) \left( {\mathbf {I}}-\tfrac{1}{n}\cdot {\mathbf {J}}\right) {\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime }\right\} \\&=\mathrm{tr}({\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime })+\beta _{A}\left( 2+\beta _{A}\right) \cdot \mathrm{tr}\left[ \left( {\mathbf {I}}-\tfrac{1}{n}\cdot {\mathbf {J}}\right) {\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime }\right] \\&=\left[ 1+\beta _{A}\left( 2+\beta _{A}\right) \right] \cdot \mathrm{tr}({\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime })-\tfrac{\beta _{A}(2+\beta _{A})}{n}\cdot {\mathbf {i}}^{\prime }{\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime }{\mathbf {i}}. \end{aligned}$$

The next steps are analogous to the corresponding calculations in Appendix 2 and result in the following representation of the Lagrangian function:

$$\begin{aligned} \mathcal {L}&={\mathbf {i}}^{\prime }{\hat{\mathbf {e}}}-{\hat{\mathbf {e}}}^{\prime }{\hat{\mathbf {e}}}-\left[ \tfrac{\alpha }{2}+\alpha \beta _{A}\left( 1+\tfrac{1}{2}\beta _{A}\right) +\beta _{P}\right] \cdot \mathrm{tr}({\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime })+\tfrac{1}{n}\cdot \left[ \alpha \beta _{A}\left( 1+\tfrac{1}{2}\beta _{A}\right) +\beta _{P}\right] \\&\quad\cdot {\mathbf {i}}^{\prime }{\mathbf {V}}{\varvec{\Upsigma }}{\mathbf {V}}^{\prime }{\mathbf {i}}. \end{aligned}$$

Comparing this expression with the one in (29) shows that the new model corresponds to the old one if we define the parameter \(\beta\) in the old model as \(\beta :=\alpha \beta _{A}\left( 1+\tfrac{1}{2}\beta _{A}\right) +\beta _{P}.\) We discuss the implications of this insight in our robustness section in the main text.

1.2 Appendix 5.2: Inequity-averse agents

Under the assumptions given in the main text, agent i’s social preference function writes:

$$\begin{aligned} {\tilde{s}}_{A}=\beta _{A}\cdot \left| {\tilde{w}}_{i}-{\tilde{w}}_{j}\right| =\beta _{A}\cdot \left| v_{1}-v_{2}\right| \cdot |\tilde{\varepsilon }|, \end{aligned}$$

with \(\tilde{\varepsilon }:=\tilde{\varepsilon }_{i}-\tilde{\varepsilon }_{j}.\) \(\tilde{\varepsilon }\) is normally distributed with mean 0 and variance \(2\sigma ^{2}-2\varrho \sigma ^{2}=2(1-\varrho )\sigma ^{2}.\) Concerning \(|\tilde{\varepsilon }|\) we can calculate \(\mathrm{E}(|\tilde{\varepsilon }|)=2\sqrt{(1-\varrho )/\pi }\cdot \sigma\) as well as

$$\begin{aligned} \mathrm{Var}(|\tilde{\varepsilon }|)&=\mathrm{E}\left( |\tilde{\varepsilon }|^{2}\right) -\mathrm{E}^{2}(|\tilde{\varepsilon }|)=\mathrm{E}\left( \tilde{\varepsilon }^{2}\right) -\mathrm{E}^{2}(|\tilde{\varepsilon }|)\\ &=\mathrm{Var}(\tilde{\varepsilon })+\mathrm{E}^{2}(\tilde{\varepsilon })-\mathrm{E}^{2}(|\tilde{\varepsilon }|)=2(1-2/\pi )(1-\varrho )\sigma ^{2}. \end{aligned}$$

Exploiting \(\hat{e}_{1}=\hat{e}_{2}=\hat{e},\) the familiar goal function of the principal becomes

$$\begin{aligned} \Phi =2\cdot \left( 1-v_{1}-v_{2}\right) \cdot \hat{e}-f_{1}-f_{2}-\beta _{P}\cdot \left( v_{1}-v_{2}\right) ^{2}\cdot (1-\varrho )\sigma ^{2}. \end{aligned}$$

Similarly we can write for agent i’s goal function:

$$\begin{aligned} \varphi _{i}=\mathrm{E}\left( {\tilde{w}}_{i}\right) -\mathrm{E}\left( {\tilde{s}}_{A}\right) -\tfrac{1}{2}\alpha \mathrm{Var}\left( {\tilde{w}}_{i}-{\tilde{s}}_{A}\right) -\hat{e}_{i}^{2}. \end{aligned}$$

Exploiting \(\mathrm{E}({\tilde{s}}_{A})=2\beta _{A}\cdot |v_{1}-v_{2}|\cdot \sqrt{(1-\varrho )/\pi }\cdot \sigma\) and

$$\begin{aligned} \mathrm{Var}\left( {\tilde{w}}_{i}-{\tilde{s}}_{A}\right) =\left[ v_{1}^{2}+v_{2}^{2}+2v_{1}v_{2}\varrho +2(1-2/\pi )\beta _{A}^{2}\cdot \left( v_{1}-v_{2}\right) ^{2}\cdot (1-\varrho )\right] \cdot \sigma ^{2}, \end{aligned}$$

we get:

$$\begin{aligned} \varphi _{i}&=f_{i}+v_{1}\hat{e}_{i}+v_{2}\hat{e}_{j}-2\beta _{A}\cdot \left| v_{1}-v_{2}\right| \cdot \sqrt{(1-\varrho )/\pi }\cdot \sigma \\&\quad -\tfrac{1}{2}\alpha \cdot \left[ v_{1}^{2}+v_{2}^{2}+2v_{1}v_{2}\varrho +2(1-2/\pi )\beta _{A}^{2}\left( v_{1}-v_{2}\right) ^{2}\cdot (1-\varrho )\right] \sigma ^{2}-\hat{e}_{i}^{2}. \end{aligned}$$

The Lagrangian function therefore becomes:

$$\begin{aligned} \mathcal {L}&=2\cdot \left( \hat{e}-\hat{e}^{2}\right) -4\beta _{A}\cdot \left| v_{1}-v_{2}\right| \cdot \sqrt{(1-\varrho )/\pi }\cdot \sigma \\&\quad -\left\{ \alpha \cdot \left( v_{1}^{2}+v_{2}^{2}+2v_{1}v_{2}\varrho \right) +\left[ 2(1-2/\pi )\alpha \beta _{A}^{2}+\beta _{P}\right] \cdot \left( v_{1}-v_{2}\right) ^{2}(1-\varrho )\right\} \sigma ^{2}. \end{aligned}$$

In the case of individual agent behavior the agents’ reaction functions are \(\hat{e}_{i}=\frac{v_{i}}{2}.\) Using the abbreviations \(\gamma _{1}:=4\beta _{A}\cdot \sqrt{(1-\varrho )/\pi }\cdot (1+\varrho )\sigma\) and \(\gamma _{2}:=\left[ 2(1-2/\pi )\beta _{A}^{2}+\tfrac{\beta _{P}}{\alpha }\right] \cdot (1-\varrho ),\) we can then write:

$$\begin{aligned} \mathcal {L}=v_{1}-\tfrac{1}{2}v_{1}^{2}-\gamma _{1}/(1+\varrho )\cdot \left| v_{1}-v_{2}\right| -\left[ v_{1}^{2}+v_{2}^{2}+2v_{1}v_{2}\varrho +\gamma _{2}\cdot \left( v_{1}-v_{2}\right) ^{2}\right] \alpha \sigma ^{2}. \end{aligned}$$

If we assume that \(v_{1}\ge v_{2}\) holds, maximizing \(\mathcal {L}\) with respect to \(v_{1}\) and \(v_{2}\) yields

$$\begin{aligned} v_{1}^{in}=\frac{1-\gamma _{1}+\gamma _{2}}{\delta } \quad \mathrm{and}\quad v_{2}^{in}=\frac{-\varrho +\gamma _{1}\cdot \left[ 1+\frac{1}{2\alpha \sigma ^{2}(1+\varrho )}\right] +\gamma _{2}}{\delta }, \end{aligned}$$

where \(\delta :=1+2\alpha \sigma ^{2}\cdot (1-\varrho ^{2})+\gamma _{2}\cdot [1+4\alpha \sigma ^{2}\cdot (1+\varrho )].\) Plugging \(v_{1}^{in}\) and \(v_{2}^{in}\) in the Lagrangian function, we can derive the optimal goal function value of the principal:

$$\begin{aligned} \Phi ^{in}=\frac{1-2\gamma _{1}+\frac{\gamma _{1}^{2}}{1+\varrho }\cdot \left[ 2+\frac{1}{2\alpha \sigma ^{2}(1+\varrho )}\right] +\gamma _{2}}{2\delta }. \end{aligned}$$

We now examine under which condition \(v_{1}^{in}\ge v_{2}^{in}\) indeed holds:

$$\begin{aligned} 1-\gamma _{1}\ge -\varrho +\gamma _{1}\cdot \left[ 1+\frac{1}{2\alpha \sigma ^{2}(1+\varrho )}\right] \iff \gamma _{1}\le \frac{2\alpha \sigma ^{2}(1+\varrho )^{2}}{1+4\alpha \sigma ^{2}(1+\varrho )}, \end{aligned}$$

which, exploiting the definition of \(\gamma _{1},\) we can re-write as follows:

$$\begin{aligned} \beta _{A}\le \frac{\alpha \sigma (1+\varrho )}{2\cdot [1+4\alpha \sigma ^{2}(1+\varrho )]\sqrt{(1-\varrho )/\pi }}. \end{aligned}$$

If we assume that \(v_{1}<v_{2}\) holds, conducting the typical derivations yields:

$$\begin{aligned} v_{1}=\frac{1+\gamma _{1}+\gamma _{2}}{\delta } \quad \mathrm{and}\quad v_{2}=\frac{-\varrho -\gamma _{1}\cdot \left[ 1+\frac{1}{2\alpha \sigma ^{2}(1+\varrho )}\right] +\gamma _{2}}{\delta }. \end{aligned}$$

Taking a closer look at these expressions, \(v_{1}<v_{2}\) would only be possible for sufficiently negative values of parameter \(\gamma _{1},\) which according to its definition can only embrace positive values. Therefore, no interior solution exists when \(\beta _{A}>\alpha \sigma (1+\varrho )/\{2\cdot [1+4\alpha \sigma ^{2}(1+\varrho )]\sqrt{(1-\varrho )/\pi }\}.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krapp, M., Sandner, K. Impact of an equal pay norm on the optimal design of incentive contracts. J Bus Econ 86, 301–338 (2016). https://doi.org/10.1007/s11573-015-0779-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11573-015-0779-z

Keywords

JEL Classification

Navigation