Skip to main content
Log in

Chaos analysis of nonlinear variable order fractional hyperchaotic Chen system utilizing radial basis function neural network

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

This research explores the various chaotic features of the hyperchaotic Chen dynamical system within a variable order fractional (VOF) calculus framework, employing an innovative approach with a nonlinear and adaptive radial basis function neural network. The study begins by computing the numerical solution of VOF differential equations for the hyperchaotic Chen system through a numerical scheme using the Caputo–Fabrizio derivative across a spectrum of different system control parameters. Subsequently, a comprehensive parametric model is formulated using RBFNN, considering the system’s various initial values. We systematically investigate the various chaotic attractors of the proposed system, employing statistical analysis, phase space reconstruction, and Lyapunov exponent. Additionally, we assess the effectiveness of the proposed computational RBFNN model using the Root Mean Square Error statistic. Importantly, the obtained results closely align with those derived from numerical algorithms, emphasizing the high accuracy and reliability of the designed network. The outcomes of this study have implications for studying chaos with variable fractional derivatives, with applications across various scientific and engineering domains. This work advances the understanding and applications of variable order fractional dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data availability

This research work has no associated data.

References

  • Ahuja B, Doriya R (2021) Visual chaos steganography with fractional transform. In: Soft computing and signal processing. Springer, pp 295–304

  • Alkahtani BST, Koca I, Atangana A (2016) A novel approach of variable order derivative: theory and Methods. J Nonl Sci Appl 9(6):4867–4876

    Article  Google Scholar 

  • Ardjouni A, Djoudi A (2020) Existence and uniqueness of positive solutions for first-order nonlinear Liouville-Caputo fractional differential equations. São Paulo J Math Sci 14(1):381–390

    Article  Google Scholar 

  • Aslam M S, Radhika T, Chandrasekar A, Zhu Q (2024) Improved event-triggered-based output tracking for a class of delayed networked T–S fuzzy systems. Int J Fuzzy Syst 1–14

  • Atangana A, Aguilar JFG, Kolade MO, Hristov JY (2020) Fractional differential and integral operators with non-singular and non-local kernel with application to nonlinear dynamical systems. Chaos Solitons Fract 132:109493

    Article  Google Scholar 

  • Atangana A, Araz Sİ (2021) New concept in calculus: piecewise differential and integral operators. Chaos Solitons Fract 145:110638

    Article  Google Scholar 

  • Atangana A, Baleanu D (2016) New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm Sci 20(2):763–769

    Article  Google Scholar 

  • Atangana A, Botha JF (2013) A generalized groundwater flow equation using the concept of variable-order derivative. Bound Value Problems 2013:1–11

    Google Scholar 

  • Bukhari AH, Raja MAZ, Rafiq N, Shoaib M, Kiani AK, Shu CM (2022) Design of intelligent computing networks for nonlinear chaotic fractional Rossler system. Chaos Solitons Fract 157:111985

    Article  Google Scholar 

  • Bukhari AH, Shoaib M, Kiani AK, Chaudhary NI, Raja MAZ, Shu CM (2023) Dynamical analysis of nonlinear fractional order Lorenz system with a novel design of intelligent solution predictive radial base networks. Math Comput Simul 213:324–347

    Article  Google Scholar 

  • Chen WC (2008) Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fract 36(5):1305–1314

    Article  Google Scholar 

  • Chen SB, Jahanshahi H, Abba OA, Solís-Pérez JE, Bekiros S, Gómez-Aguilar JF, Yousefpour A, Chu YM (2020) The effect of market confidence on a financial system from the perspective of fractional calculus: Numerical investigation and circuit realization. Chaos Solitons Fract 140:110223

    Article  Google Scholar 

  • Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifurc Chaos 9(07):1465–1466

    Article  Google Scholar 

  • Dlamini A, Goufo EFD, Khumalo M (2021) On the Caputo–Fabrizio fractal fractional representation for the Lorenz chaotic system. AIMS Math 6(11):12395–12421

    Article  Google Scholar 

  • Długosz M, Skruch P (2016) The application of fractional-order models for thermal process modelling inside buildings. J Building Phys 39(5):440–451

    Article  Google Scholar 

  • Gul T, Qadeer A, Alghamdi W, Saeed A, Mukhtar S, Jawad M (2021) Irreversibility analysis of the couple stress hybrid nanofluid flow under the effect of electromagnetic field. Int J Numer Meth Heat Fluid Flow 32(2):642–659

    Article  Google Scholar 

  • Gupta A, Kumar S (2021) Design of Atangana–Baleanu-Caputo fractional-order digital filter. ISA Trans 112:74–88

    Article  PubMed  Google Scholar 

  • Hegazi AS, Matouk AE (2011) Dynamical behaviors and synchronization in the fractional order hyperchaotic Chen system. Appl Math Lett 24(11):1938–1944

    Article  Google Scholar 

  • Homaeinezhad MR, Shahhosseini A (2020) Fractional order actuation systems: theoretical foundation and application in feedback control of mechanical systems. Appl Math Model 87:625–639

    Article  Google Scholar 

  • Jadoon I, Raja MAZ, Junaid M, Ahmed A, ur Rehman A, and Shoaib M (2021) Design of evolutionary optimized finite difference based numerical computing for dust density model of nonlinear Van-der Pol Mathieu’s oscillatory systems. Math Comput Simul 181:444–470

  • Jahanshahi H, Yousefpour A, Munoz-Pacheco JM, Kacar S, Pham VT, Alsaadi FE (2020) A new fractional-order hyperchaotic memristor oscillator: dynamic analysis, robust adaptive synchronization, and its application to voice encryption. Appl Math Comput 383:125310

    Google Scholar 

  • Kulish VV, Lage JL (2002) Application of fractional calculus to fluid mechanics. J Fluids Eng 124(3):803–806

    Article  Google Scholar 

  • Li C, Chen G (2004) Chaos and hyperchaos in the fractional-order Rössler equations. Phys A 341:55–61

    Article  Google Scholar 

  • Li CK, Li RC (2005) A note on eigenvalues of perturbed Hermitian matrices. Linear Algebra Appl 395:183–190

    Article  Google Scholar 

  • Liang L, Guo W, Zhang Y, Zhang W, Li L, Xing X (2020) Radial Basis Function Neural Network for prediction of medium-frequency sound absorption coefficient of composite structure open-cell aluminum foam. Appl Acoust 170:107505

    Article  Google Scholar 

  • Lin Z, Wang H (2021) Modeling and application of fractional-order economic growth model with time delay. Fract Fract 5(3):74

    Article  Google Scholar 

  • Lin H, Wang C, Yu F, Hong Q, Xu C, Sun Y (2023) A triple-memristor hopfield neural network with space multi-structure attractors and space initial-offset behaviors. IEEE Trans Comput Aided Des Integr Circuits Syst 42(12):4948–4958

    Article  Google Scholar 

  • Matuš\(\mathring{{\rm u}}\) R (2011) Application of fractional order calculus to control theory. Int J Math Models Methods Appl Sci 5(7):1162–1169

  • Mirzaee F, Alipour S (2020) Cubic B-spline approximation for linear stochastic integro-differential equation of fractional order. J Comput Appl Math 366:112440

    Article  Google Scholar 

  • Nasser-Eddine A, Huard B, Gabano JD, Poinot T (2019) A two steps method for electrochemical impedance modeling using fractional order system in time and frequency domains. Control Eng Pract 86:96–104

    Article  Google Scholar 

  • Naz S, Raja MAZ, Kausar A, Zameer A, Mehmood A, Shoaib M (2022) Dynamics of nonlinear cantilever piezoelectric-mechanical system: An intelligent computational approach. Math Comput Simul 196:88–113

    Article  Google Scholar 

  • Owolabi KM, Karaagac B (2020) Dynamics of multi-pulse splitting process in one-dimensional Gray–Scott system with fractional order operator. Chaos Solitons Fract. 136:109835

    Article  Google Scholar 

  • Parsa Moghaddam B, Yaghoobi S, Tenreiro Machado JA (2016) An extended predictor corrector algorithm for variable order fractional delay differential equations. J Comput Nonlinear Dyn 1:1–11

    Google Scholar 

  • Patnaik S, Hollkamp JP, Semperlotti F (2020) Applications of variable-order fractional operators: a review. Proc R Soc A 476(2234):20190498

    Article  PubMed  PubMed Central  Google Scholar 

  • Prommee P, Pienpichayapong P, Manositthichai N, Wongprommoon N (2021) OTA-based tunable fractional-order devices for biomedical engineering. AEU-Int J Electron Commun 128:153520

    Article  Google Scholar 

  • Radhika T, Chandrasekar A, Vijayakumar V, Zhu Q (2023) Analysis of Markovian jump stochastic Cohen-Grossberg BAM neural networks with time delays for exponential input-to-state stability. Neural Process Lett 55(8):11055–11072

    Article  Google Scholar 

  • Samko SG (1995) Fractional integration and differentiation of variable order. Anal Math 21(3):213–236

    Article  Google Scholar 

  • Sha Y, Mou J, Banerjee S, Zhang Y (2023) Exploiting flexible and secure cryptographic technique for multi-dimensional image based on graph data structure and three-input majority gate. IEEE Trans Industr Inf 20:3

    Google Scholar 

  • Sheng H, Sun H, Chen Y, Qiu T (2011) Synthesis of multifractional Gaussian noises based on variable-order fractional operators. Signal Process 91(7):1645–1650

    Article  Google Scholar 

  • Sheng H, Sun HG, Coopmans C, Chen YQ, Bohannan GW (2011) A physical experimental study of variable-order fractional integrator and differentiator. Eur Phys J Spec Top 193:93–104

    Article  Google Scholar 

  • Solís-Pérez JE, Gómez-Aguilar JF, Atangana A (2018) Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws. Chaos Solitons Fract 114:175–185

    Article  Google Scholar 

  • Sun H, Chen W, Chen Y (2009) Variable-order fractional differential operators in anomalous diffusion modeling. Phys A 388(21):4586–4592

    Article  CAS  Google Scholar 

  • Sun J, Zhai Y, Liu P, Wang Y (2024) Memristor-based neural network circuit of associative memory with overshadowing and emotion congruent effect. IEEE Trans Neural Networks Learn Syst 1–13

  • Tseng CC (2006) Design of variable and adaptive fractional order FIR differentiators. Signal Process 86(10):2554–2566

    Article  Google Scholar 

  • Ullah S, Ullah O, Khan MA, Gul T (2020) Optimal control analysis of tuberculosis (TB) with vaccination and treatment. Eur Phys J Plus 135:1–27

    Google Scholar 

  • Wang S, He S, Yousefpour A, Jahanshahi H, Repnik R, Perc M (2020) Chaos and complexity in a fractional-order financial system with time delays. Chaos Solitons Fract 131:109521

    Article  Google Scholar 

  • Wang XY, Song JM (2009) Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Commun Nonlinear Sci Numer Simul 14(8):3351–3357

    Article  Google Scholar 

  • Xu Q, Liu T, Ding S, Bao H, Li Z, Chen B (2023) Extreme multistability and phase synchronization in a heterogeneous bi-neuron Rulkov network with Memristive electromagnetic induction. Cogn Neurodyn 17(3):755–766

    Article  PubMed  Google Scholar 

  • Yousefpour A, Jahanshahi H, Munoz-Pacheco JM, Bekiros S, Wei Z (2020) A fractional-order hyper-chaotic economic system with transient chaos. Chaos Solitons Fract 130:109400

    Article  Google Scholar 

  • Yu F, Yuan Y, Wu C, Yao W, Xu C, Cai S, Wang C (2024) Modeling and hardware implementation of a class of Hamiltonian conservative chaotic systems with transient quasi-period and multistability. Nonlinear Dyn 112(3):2331–2347

    Article  Google Scholar 

  • Yépez-Martínez H, Gómez-Aguilar JF (2019) A new modified definition of Caputo–Fabrizio fractional-order derivative and their applications to the multi step homotopy analysis method (MHAM). J Comput Appl Math 346:247–260

    Article  Google Scholar 

  • Zafarghandi FS, Mohammadi M, Babolian E, Javadi S (2019) Radial basis functions method for solving the fractional diffusion equations. Appl Math Comput 342:224–246

    Google Scholar 

  • Zhou T, Tang Y, Chen G (2003) Complex dynamical behaviors of the chaotic Chen’s system. Int J Bifurc Chaos 13(09):2561–2574

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the editor and anonymous reviewers for reviewing the manuscript and providing constructive comments for improvement. The authors would like to thank Prince Sultan University for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zia Bashir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Bashir, Z. & Malik, M.G.A. Chaos analysis of nonlinear variable order fractional hyperchaotic Chen system utilizing radial basis function neural network. Cogn Neurodyn (2024). https://doi.org/10.1007/s11571-024-10118-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11571-024-10118-9

Keywords

Navigation