Skip to main content
Log in

Energy dependence of synchronization mode transitions in the delay-coupled FitzHugh-Nagumo system driven by chaotic activity

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Energy absorption and consumption are essential for the activity of single neurons and neuronal networks. The synchronization mode transition and energy dependence in a delay-coupled FitzHugh-Nagumo (FHN) neuronal system driven by chaotic activity are investigated in this paper. With the change of chaotic current intensity, it was found that the synchronization mode of coupled neurons undergoes synchronous state, transition state, anti-phase state, alternating asynchronous and anti-phase state, and chaotic current-induced chaotic state. The Hamiltonian energy is much dependent on the synchronization mode of coupled neurons. The synchronization mode and the Hamiltonian energy of coupled neurons can be modulated by chaotic current intensity, coupling strength and time delay. The introduction of the time delay induces the system to become bistable state. Chaotic current as an external force induced transitions between the synchronous and anti-phase states. Coupling strength is an intrinsic property of the system and can change the properties of the bistable state. Furthermore, the synchronous and anti-phase states appear intermittently with the increasing of time delay. A chained neuronal network is used to prove that the synchronization mode transition of the system of multiple neurons is similar to the two neurons. The results of this paper might help one to understand the intrinsic energy alteration mechanisms of neuronal synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  • Adhikari BM, Prasad A, Dhamala M (2011) Time-delay-induced phase-transition to synchrony in coupled bursting neurons. Chaos 21(2):023116

    Article  PubMed  Google Scholar 

  • Baltanas JP, Casado JM (1998) Bursting behaviour of the FitzHugh-Nagumo neuron model subject to quasi-monochromatic noise. Physica D 122(1–4):231–240

    Article  Google Scholar 

  • Baysal V, Yılmaz E (2021) Chaotic signal induced delay decay in Hodgkin-Huxley Neuron. Appl Math Comput 411:126540

    Google Scholar 

  • Baysal V, Saraç Z, Yilmaz E (2019) Chaotic resonance in Hodgkin-Huxley neuron. Nonlinear Dyn 97(2):1275–1285

    Article  Google Scholar 

  • Baysal V, Erkan E, Yilmaz E (2021) Impacts of autapse on chaotic resonance in single neurons and small-world neuronal networks. Philos T R Soc A 379(2198):20200237

    Article  CAS  Google Scholar 

  • Burić N, Todorović K, Vasović N (2008) Synchronization of bursting neurons with delayed chemical synapses. Phys Rev E 78(3):036211

    Article  Google Scholar 

  • Dhamala M, Jirsa VK, Ding MZ (2004) Enhancement of neural synchrony by time delay. Phys Rev Lett 92(7):074104

    Article  PubMed  Google Scholar 

  • Ding QM, Wu Y, Li TY, Yu D, Jia Y (2023) Metabolic energy consumption and information transmission of a two-compartment neuron model and its cortical network. Chaos Soliton Fract 171:113464

    Article  Google Scholar 

  • Dirk K, Gegenfurtner Karl R (2003) Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Curr Biol 13(22):1975–1978

    Article  Google Scholar 

  • Dirk J, Wolfram E, Gregor S, Dinse Hubert R (2004) Shorter latencies for motion trajectories than for flashes in population responses of cat primary visual cortex. J Physiol 556(3):971–982

    Article  Google Scholar 

  • Doron G, Von Heimendahl M, Schlattmann P, Houweling AR, Brecht M (2014) Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation. Neuron 81(3):653–663

    Article  CAS  PubMed  Google Scholar 

  • Freeman WJ (1990) On the problem of anomalous dispersion in chaoto-chaotic phase transitions of neural masses, and its significance for the management of perceptual information in brains. Synergetics of cognition. Springer, Berlin, pp 126–143

    Chapter  Google Scholar 

  • Freeman WJ (2000) A proposed name for aperiodic brain activity: stochastic chaos. Neural Netw 13(1):11–13

    Article  CAS  PubMed  Google Scholar 

  • Freeman WJ, Burke BC, Holmes MD (2003) Aperiodic phase re-setting in scalp EEG of beta-gamma oscillations by state transitions at alpha-theta rates. Hum Brain Mapp 19(4):248–272

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansel D, Mato G (2013) Short-term plasticity explains irregular persistent activity in working memory tasks. J Neurosci 33(1):133–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75(5):762–777

    Article  CAS  PubMed  Google Scholar 

  • Jiruska P, de Curtis M, Jefferys JGR, Schevon CA, Schiff SJ, Schindler K (2013) Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol-London 591(4):787–797

    Article  CAS  PubMed  Google Scholar 

  • Ju HW, Hines ML, Yu YG (2016) Cable energy function of cortical axons. Sci Rep 6:29686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li TY, Wang GW, Yu D, Ding QM, Jia Y (2022) Synchronization mode transitions induced by chaos in modified Morris-Lecar neural systems with weak coupling. Nonlinear Dyn 108(3):2611–2625

    Article  Google Scholar 

  • Li TY, Wu Y, Yang LJ, Fu ZY, Jia Y (2023) Neuronal morphology and network properties modulate signal propagation in multi-layer feedforward network. Chaos Soliton Fract 172:113554

    Article  Google Scholar 

  • Longtin A (1993) Stochastic resonance in neuron models. J Stat Phys 70(1):309–327

    Article  Google Scholar 

  • Lu QS, Gu HG, Yang ZQ, Shi X, Duan LX, Zheng YH (2008) Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis. Acta Mech Sinica-Prc 24(6):593–628

    Article  CAS  Google Scholar 

  • Lu LL, Ge MY, Xu Y, Jia Y (2019a) Phase synchronization and mode transition induced by multiple time delays and noises in coupled FitzHugh–Nagumo model. Physica A 535:122419

    Article  Google Scholar 

  • Lu LL, Jia Y, Xu Y, Ge MY, Yang LJ, Zhan X (2019b) Energy dependence on modes of electric activities of neuron driven by different external mixed signals under electromagnetic induction. Sci China Technol Sc 62(3):427–440

    Article  Google Scholar 

  • Ma J, Ying HP, Pu ZS (2005) An anti-control scheme for spiral under Lorenz chaotic signals. Chinese Phys Lett 22(5):1065–1068

    Article  Google Scholar 

  • Matias FS, Carelli PV, Mirasso CR, Copelli M (2017) Anticipated synchronization in neuronal circuits unveiled by a phase-response-curve analysis. Phys Rev E 95(5):052410

    Article  PubMed  Google Scholar 

  • Moujahid A, d’Anjou A, Torrealdea FJ, Torrealdea F (2011) Efficient synchronization of structurally adaptive coupled Hindmarsh-Rose neurons. Chaos Soliton Fract 44(11):929–933

    Article  Google Scholar 

  • Moujahid A, Danjou A, Torrealdea FJ, Torrealdea F (2011) Energy and information in Hodgkin-Huxley neurons. Phys Rev E 83(3):031912

    Article  CAS  Google Scholar 

  • Parastesh F, Azarnoush H, Jafari S, Hatef B, Perc M, Repnik R (2019) Synchronizability of two neurons with switching in the coupling. Appl Math Comput 350:217–223

    Google Scholar 

  • Saha A, Feudel U (2017) Extreme events in FitzHugh-Nagumo oscillators coupled with two time delays. Phys Rev E 95(6):062219

    Article  PubMed  Google Scholar 

  • Sarasola C, Torrealdea FJ, d’Anjou A, Moujahid A, Grana M (2004) Energy balance in feedback synchronization of chaotic systems. Phys Rev E 69(1):011606

    Article  CAS  Google Scholar 

  • Selverston AI, Rabinovich MI, Abarbanel HD, Elson R, Szucs A, Pinto RD, Huerta R, Varona P (2000) Reliable circuits from irregular neurons: a dynamical approach to understanding central pattern generators. J Physiol-Paris 94(5–6):357–374

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Lu QS (2005) Firing patterns and complete synchronization of coupled Hindmarsh-Rose neurons. Chin Phys 14(1):77–85

    Article  Google Scholar 

  • Song XL, Jin WY, Ma J (2015) Energy dependence on the electric activities of a neuron. Chinese Phys B 24(12):128710

    Article  Google Scholar 

  • Stepp N, Turvey MT (2017) Anticipation in Manual Tracking With Multiple Delays. J Exp Psychol Hum Percept Perform 43(5):914–925

    Article  PubMed  Google Scholar 

  • Stiefel KM, Englitz B, Sejnowski TJ (2013) Origin of intrinsic irregular firing in cortical interneurons. P Natl Acad Sci USA 110(19):7886–7891

    Article  CAS  Google Scholar 

  • Torrealdea FJ, Danjou A, Grana M, Sarasola C (2006) Energy aspects of the synchronization of model neurons. Phys Rev E 74(1):011905

    Article  CAS  Google Scholar 

  • Torrealdea FJ, Sarasola C, d’Anjou A, Moujahid A, de Mendizabal NV (2009) Energy efficiency of information transmission by electrically coupled neurons. Biosystems 97(1):60–71

    Article  PubMed  Google Scholar 

  • Uhhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52(1):155–168

    Article  Google Scholar 

  • Usha K, Subha PA (2019) Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor. Chinese Phys B 28(2):020502

    Article  Google Scholar 

  • Wang RB, Zhu YT (2016) Can the activities of the large scale cortical network be expressed by neural energy? A Brief Review Cogn Neurodyn 10(1):1–5

    Article  PubMed  Google Scholar 

  • Wang QY, Lu QS, Chen GR, Feng ZS, Duan LX (2009a) Bifurcation and synchronization of synaptically coupled FHN models with time delay. Chaos Soliton Fract 39(2):918–925

    Article  Google Scholar 

  • Wang RB, Zhang ZK, Chen GR (2009b) Energy coding and energy functions for local activities of the brain. Neurocomputing 73(1–3):139–150

    Article  Google Scholar 

  • Wang CN, Wang Y, Ma J (2016) Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Acta Phys Sin 65(24):240501

    Article  Google Scholar 

  • Wang RB, Wang ZY, Zhu ZY (2018) The essence of neuronal activity from the consistency of two different neuron models. Nonlinear Dyn 92(3):973–982

    Article  Google Scholar 

  • Wang YH, Xu XY, Zhu YT, Wang RB (2019a) Neural energy mechanism and neurodynamics of memory transformation. Nonlinear Dyn 97(1):697–714

    Article  Google Scholar 

  • Wang YH, Xu XY, Wang RB (2019b) The place cell activity is information-efficient constrained by energy. Neural Netw 116:110–118

    Article  PubMed  Google Scholar 

  • Wang RB, Wang YH, Xu XY, Pan XC (2020a) Mechanical thoughts and applications in cognitive neuroscience. Advances in Mechanics 50:202012

    Google Scholar 

  • Wang YH, Xu XY, Wang RB (2020b) Energy features in spontaneous up and down oscillations. Cogn Neurodyn 15(1):65–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang GW, Xu Y, Ge MY, Lu LL, Jia Y (2020c) Mode transition and energy dependence of FitzHugh-Nagumo neural model driven by high-low frequency electromagnetic radiation. AEU-Int J Electron C 120:153209

    Article  Google Scholar 

  • Wang GW, Wu Y, Xiao FL, Ye ZQ, Jia Y (2022) Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction. Physica A 598:127274

    Article  Google Scholar 

  • Xu Y, Jia Y, Ma J, Alsaedi A, Ahmad B (2017) Synchronization between neurons coupled by memristor. Chaos Soliton Fract 104:435–442

    Article  Google Scholar 

  • Yang LJ, Liu WH, Yi M, Wang CJ, Zhu QM, Zhan X, Jia Y (2012) Vibrational resonance induced by transition of phase-locking modes in excitable systems. Phys Rev E 86(1):016209

    Article  Google Scholar 

  • Yu LC, Yu YG (2017) Energy-efficient neural information processing in individual neurons and neuronal networks. J Neurosci Res 95(11):2253–2266

    Article  CAS  PubMed  Google Scholar 

  • Yu HT, Wang J, Liu C, Deng B, Wei XL (2014) Delay-induced synchronization transitions in modular scale-free neuronal networks with hybrid electrical and chemical synapses. Physica A 405:25–34

    Article  Google Scholar 

  • Yu D, Lu LL, Wang GW, Yang LJ, Jia Y (2021a) Synchronization mode transition induced by bounded noise in multiple time-delays coupled FitzHugh–Nagumo model. Chaos Soliton Fract 147:111000

    Article  Google Scholar 

  • Yu D, Zhou XY, Wang GW, Ding QM, Li TY, Jia Y (2021b) Effects of chaotic activity and time delay on signal transmission in FitzHugh-Nagumo neuronal system. Cogn Neurodyn 16(4):887–897

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu D, Wang GW, Li TY, Ding QM, Jia Y (2023a) Filtering properties of Hodgkin-Huxley neuron to different time-scale signals. Commun Nonlinear Sci Numer Simul 117:106894

    Article  Google Scholar 

  • Yu D, Wu Y, Yang LJ, Zhao YJ, Jia Y (2023b) Effect of topology on delay-induced multiple resonances in locally driven systems. Physica A 609:128330

    Article  Google Scholar 

  • Yu D, Yang L, Zhan X, Fu Z, Jia Y (2023) Logical stochastic resonance and energy consumption in stochastic Hodgkin-Huxley neuron system. Nonlinear Dynamics 111(7):6757–6772

    Article  Google Scholar 

  • Zhang Y, Wang CN, Tang J, Ma J, Ren GD (2020) Phase coupling synchronization of FHN neurons connected by a Josephson junction. Sci China Technol Sc 63(11):2328–2338

    Article  CAS  Google Scholar 

  • Zhen B, Li ZH, Song Z (2019) Influence of time delay in signal transmission on synchronization between two coupled FitzHugh-Nagumo neurons. Appl Sci-Basel 9(10):2159

    Article  Google Scholar 

  • Zhou XY, Xu Y, Wang G, Jia Y (2020) Ionic channel blockage in stochastic Hodgkin-Huxley neuronal model driven by multiple oscillatory signals. Cogn Neurodyn 14(4):569–578

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant 12175080, and also supported by the Fundamental Research Funds for the Central Universities under CCNU22JC009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Jia.

Ethics declarations

Competing Interest

The authors declare that they have no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yu, D., Yang, L. et al. Energy dependence of synchronization mode transitions in the delay-coupled FitzHugh-Nagumo system driven by chaotic activity. Cogn Neurodyn 18, 685–700 (2024). https://doi.org/10.1007/s11571-023-10021-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-023-10021-9

Keywords

Navigation